JEE Advance - Physics (2024 - Paper 2 Online - No. 9)
Explanation
For Case I :
$$\mathrm{a}_{\mathrm{rel}}=0$$
For collision $$\frac{\mathrm{v}_0}{\sqrt{2}}=\frac{\mathrm{v}}{\sqrt{2}}$$
$$\begin{aligned} & \therefore \mathrm{v}=\mathrm{v}_0 \\ & \text { So } \mathrm{T}_1=\frac{\mathrm{L}}{\frac{\mathrm{v}_0}{\sqrt{2}}+\frac{\mathrm{v}}{\sqrt{2}}} \\ & \therefore \tau_1=\frac{\mathrm{L}}{\sqrt{2} \mathrm{v}_0} \quad \text{... (1)} \end{aligned}$$
For case II,
$$\mathrm{a}_{\mathrm{rel}}=0$$
For collision, $$\frac{v_0 \sqrt{3}}{2}=\frac{v}{2}$$
$$\begin{aligned} & \therefore \mathrm{v}=\sqrt{3} \mathrm{v}_0 \\ & \text { So, } \mathrm{T}_2=\frac{\mathrm{L}}{\frac{\mathrm{v}_0}{2}+\mathrm{v} \frac{\sqrt{3}}{2}} \\ & \mathrm{~T}_2=\frac{\mathrm{L}}{\frac{\mathrm{v}_0}{2}+\frac{3 \mathrm{v}_0}{2}} \\ & \therefore \mathrm{T}_2=\frac{\mathrm{L}}{2 \mathrm{v}_0} \quad \ldots . .(2) \\ & \text { so, }\left(\frac{\mathrm{T}_1}{\mathrm{~T}_2}\right)^2=(\sqrt{2})^2=2 \Rightarrow\left(\frac{\mathrm{T}_1}{\mathrm{~T}_2}\right)^2=2 \end{aligned}$$
Comments (0)
