JEE Advance - Physics (2024 - Paper 2 Online - No. 7)

A positive, singly ionized atom of mass number $A_{\mathrm{M}}$ is accelerated from rest by the voltage $192 \mathrm{~V}$. Thereafter, it enters a rectangular region of width $w$ with magnetic field $\vec{B}_0=0.1 \hat{k}$ Tesla, as shown in the figure. The ion finally hits a detector at the distance $x$ below its starting trajectory.

[Given: Mass of neutron/proton $=(5 / 3) \times 10^{-27} \mathrm{~kg}$, charge of the electron $=1.6 \times 10^{-19} \mathrm{C}$.]

JEE Advanced 2024 Paper 2 Online Physics - Magnetism Question 1 English

Which of the following option(s) is(are) correct?

The value of $x$ for $H^{+}$ion is $4 \mathrm{~cm}$.
The value of $x$ for an ion with $A_{\mathrm{M}}=144$ is $48 \mathrm{~cm}$.
For detecting ions with $1 \leq A_{\mathrm{M}} \leq 196$, the minimum height $\left(x_1-x_0\right)$ of the detector is $55 \mathrm{~cm}$.
The minimum width $w$ of the region of the magnetic field for detecting ions with $A_{\mathrm{M}}=196$ is $56 \mathrm{~cm}$.

Explanation

JEE Advanced 2024 Paper 2 Online Physics - Magnetism Question 1 English Explanation

$$\begin{aligned} & x=2 R \\ & \Rightarrow x=2 \frac{P}{q B} \Rightarrow x=\frac{2 \sqrt{2 m q V}}{q B} \Rightarrow x=\frac{2}{B} \sqrt{\frac{2 m V}{q}} \end{aligned}$$

Option A

For $$\mathrm{H}^{+} \rightarrow \mathrm{m}=\frac{5}{3} \times 10^{-27} \mathrm{~kg}$$

$$\therefore x=\frac{2}{0.1} \sqrt{\frac{2 \times \frac{5}{3} \times 10^{-27} \times 192}{1.6 \times 10^{-19}}}=4 \mathrm{~cm}$$

Option B

For $$\mathrm{A}_{\mathrm{m}}=144$$

$$x=\frac{2}{0.1} \sqrt{\frac{2 \times 144 \times \frac{5}{3} \times 10^{-27} \times 192}{1.6 \times 10^{-19}}}=48 \mathrm{~cm}$$

Option C

for $$\mathrm{A}_{\mathrm{m}}=1$$

$$\mathrm{x}=4 \mathrm{~cm}$$ & for $$\mathrm{A}_{\mathrm{m}}=196$$

$$\mathrm{x}=56 \mathrm{~cm}$$.

so $$\mathrm{x}_0=4 \mathrm{~cm}$$ & $$\mathrm{x}_1=56 \mathrm{~cm}$$

$$\therefore \mathrm{x}_1-\mathrm{x}_0=52 \mathrm{~cm}$$.

Option D

Minimum width $$=\mathrm{R}$$

for $$\mathrm{A}_M=196$$

$$\mathrm{R}=\frac{\mathrm{P}}{\mathrm{qB}}=\frac{\sqrt{2 \mathrm{mqV}}}{\mathrm{qB}}$$

$$\mathrm{R}=\frac{1}{\mathrm{~B}} \sqrt{\frac{2 \mathrm{mV}}{\mathrm{q}}}$$

$$\mathrm{w}_{\min }=\mathrm{R}=\frac{1}{0.1} \sqrt{\frac{2 \times 196 \times \frac{5}{3} \times 10^{-27} \times 192}{1.6 \times 10^{-19}}}=28 \mathrm{~cm}$$

Comments (0)

Advertisement