JEE Advance - Physics (2024 - Paper 2 Online - No. 15)
The maximum speed in $\mu \mathrm{m} / \mathrm{s}$ at which the $8^{\text {th }}$ bright fringe will move is ______.
Answer
24
Explanation
$$\begin{aligned}
& \mathrm{y}=\mathrm{n} \cdot \frac{\lambda \mathrm{D}}{\mathrm{d}} \\
& \mathrm{v}=\frac{\mathrm{dy}}{\mathrm{dt}}=-\mathrm{n} \cdot \frac{\lambda \cdot \mathrm{d}}{\mathrm{d}^2} \cdot \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \\
& \mathrm{d}=0.8+0.04 \sin \omega \mathrm{t} \\
& \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}=0.04 \omega \cos \omega \mathrm{t} \\
& \text { for } \mathrm{v} \rightarrow \max \Rightarrow \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \rightarrow \max \\
& \text { For } \frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}} \rightarrow \max \\
& \cos \omega \mathrm{t}=1 \Rightarrow \sin \omega \mathrm{t}=0 \\
& \Rightarrow\left(\frac{\mathrm{d}(\mathrm{d})}{\mathrm{dt}}\right)_{\max }=0.04 \\
& \Rightarrow \mathrm{d}=0.8 \mathrm{~mm} \\
& \mathrm{v}_{\max }=\frac{8 \times 6000 \times 10^{-10} \times 1 \times 0.04 \times 0.08}{0.8 \times 0.8 \times 10^{-6} \times 10^{-3}}=24 \mu \mathrm{m} / \mathrm{s}
\end{aligned}$$
Comments (0)
