JEE Advance - Physics (2024 - Paper 2 Online - No. 14)
The $8^{\text {th }}$ bright fringe above the point $\mathrm{O}$ oscillates with time between two extreme positions. The separation between these two extreme positions, in micrometer $(\mu \mathrm{m})$, is _________ .
Answer
601.50
Explanation
$$\begin{aligned}
& \mathrm{y}=\mathrm{n} .\left(\frac{\lambda \mathrm{D}}{\mathrm{d}}\right) \\
& \text { for } 8^{\text {th }} \text { fringe } \\
& \mathrm{y}=8 \frac{\lambda \mathrm{D}}{\mathrm{d}} \\
& \mathrm{y}_{\max }=8 \frac{\lambda \mathrm{D}}{\mathrm{d}_{\text {min }}} \\
& \mathrm{y}_{\text {min }}=8 \frac{\lambda \mathrm{D}}{\mathrm{d}_{\text {max }}} \\
& \mathrm{y}_{\text {max }}-\mathrm{y}_{\text {min }}=8 \lambda \mathrm{D}\left[\frac{1}{\mathrm{~d}_{\text {min }}}-\frac{1}{\mathrm{~d}_{\text {max }}}\right] \\
& \lambda=6000 \mathop A\limits^o\\
& \begin{aligned}
& \mathrm{D}=1 \mathrm{~m} \\
& \mathrm{~d}_{\max }=0.34 \mathrm{~mm} \\
& \mathrm{~d}_{\min }=0.76 \mathrm{~mm} \\
& \mathrm{y}_{\text {max }}-\mathrm{y}_{\min }=8 \times 6000 \times 10^{-10} \times 1\left[\frac{1}{0.76 \times 10^{-3}}-\frac{1}{0.84 \times 10^{-3}}\right] \\
& \quad=8 \times 6 \times 10^{-4} \times\left[\frac{0.08}{0.76 \times 0.84}\right]=601.5 \mu \mathrm{m}
\end{aligned}
\end{aligned}$$
Comments (0)
