JEE Advance - Physics (2024 - Paper 1 Online - No. 5)
Explanation
The central force will provide necessary centripetal force
$$\Rightarrow \mathrm{kr}=\frac{\mathrm{mv}^2}{\mathrm{r}}$$
or, $$\mathrm{kr}^2=\mathrm{mv}^2\quad \text{... (1)}$$
By quantisation rule $$\mathrm{n} \hbar=\mathrm{mvr}$$
or, $$\frac{\mathrm{n} \hbar}{\mathrm{r}}=\mathrm{mv}\quad \text{... (2)}$$
$$\begin{aligned} & \frac{(1)}{(2)^2} \Rightarrow \frac{\mathrm{kr}^2}{\frac{\mathrm{n}^2 \hbar^2}{\mathrm{r}^2}}=\frac{\mathrm{mv}^2}{\mathrm{~m}^2 \mathrm{v}^2} \\ & \Rightarrow \frac{\mathrm{k}}{\mathrm{n}^2 \hbar^2} \mathrm{r}^4=\frac{1}{\mathrm{~m}} \\ & \Rightarrow \mathrm{r}=\left(\frac{\mathrm{n}^2 \hbar^2}{\mathrm{~km}}\right)^{\frac{1}{4}} \Rightarrow \mathrm{r}^2=\frac{\mathrm{n} \hbar}{\sqrt{\mathrm{mk}}} \end{aligned}$$
(B) Using (1), $$\mathrm{K} \cdot \frac{\mathrm{n} \hbar}{\sqrt{\mathrm{mk}}}=\mathrm{mv}^2$$
$$\Rightarrow \mathrm{v}^2=\mathrm{n} \hbar \sqrt{\frac{\mathrm{k}}{\mathrm{m}^3}}$$
(C) $$\frac{\mathrm{L}}{\mathrm{mr}^2}=\frac{\mathrm{mvr}}{\mathrm{mr}^2}=\frac{\mathrm{v}}{\mathrm{r}}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$$ from (1)
(D) $$\mathrm{E}=\frac{1}{2} \mathrm{mv}^2+\frac{1}{2} \mathrm{kr}^2=\frac{\mathrm{n} \hbar}{2} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}+\frac{1}{2} \mathrm{k} \frac{\mathrm{n} \hbar}{\sqrt{\mathrm{mk}}}$$
$$\mathrm{E}=\mathrm{n} \hbar \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$$
Comments (0)
