JEE Advance - Physics (2022 - Paper 1 Online - No. 9)
A medium having dielectric constant $K>1$ fills the space between the plates of a parallel plate capacitor. The plates have large area, and the distance between them is $d$. The capacitor is connected to a battery of voltage $V$, as shown in Figure (a). Now, both the plates are moved by a distance of $\frac{d}{2}$ from their original positions, as shown in Figure (b).
In the process of going from the configuration depicted in Figure (a) to that in Figure (b), which of the following statement(s) is(are) correct?
Explanation
$C_a=\frac{K \varepsilon_0 A}{d}$
$$ \therefore $$ $q_a=\frac{K \varepsilon_0 A}{d} V$
$ E_a =\frac{q_a}{K A \varepsilon_0}$
$=\frac{K \varepsilon_0 A V}{d K \varepsilon_0 A} $
$ =\frac{V}{d}$
$\begin{aligned} C_b & =\frac{\varepsilon_0 A}{d+\left(\frac{d}{K}\right)} \\\\ & =\frac{\varepsilon_0 A K}{d(K+1)}\end{aligned}$
$q_b=\frac{\varepsilon_0 A K V}{d(K+1)}$
$\left(E_b\right)_{\text {dielectric }} $
$=\frac{E_{\text {air }}}{K} $
$=\frac{q_b}{K A \varepsilon_0} $
$=\frac{\varepsilon_0 A K V}{d(K+1)\left(K A \varepsilon_0\right)}$
$ =\frac{V}{d(K+1)}$
$\begin{aligned} &\therefore\text { Capacitance decrease by a factor of } \frac{1}{K+1} \\\\ & \text { Work done in the process }=U_f-U_i \\\\ &=\frac{1}{2}\left(C_f-C_i\right) V^2 \\\\ &=\frac{1}{2}\left(\frac{\varepsilon_0 A K}{d(K+1)}-\frac{K \varepsilon_0 A}{d}\right) V^2 \\\\ &=\frac{1}{2} V^2 \frac{\varepsilon_0 A K}{d}\left(\frac{1}{K+1}-1\right) \\\\ &=\frac{1}{2} \frac{\varepsilon_0 A K V^2}{d} \frac{1-K-1}{K+1} \\\\ &=\frac{1}{2} \frac{\varepsilon_0 A V^2}{d}\left(\frac{-K^2}{K+1}\right)\end{aligned}$
Comments (0)
