JEE Advance - Physics (2022 - Paper 1 Online - No. 11)
An ideal gas of density $\rho=0.2 \mathrm{~kg} \mathrm{~m}^{-3}$ enters a chimney of height $h$ at the rate of $\alpha=$ $0.8 \mathrm{~kg} \mathrm{~s}^{-1}$ from its lower end, and escapes through the upper end as shown in the figure. The cross-sectional area of the lower end is $A_{1}=0.1 \mathrm{~m}^{2}$ and the upper end is $A_{2}=0.4 \mathrm{~m}^{2}$. The pressure and the temperature of the gas at the lower end are $600 \mathrm{~Pa}$ and $300 \mathrm{~K}$, respectively, while its temperature at the upper end is $150 \mathrm{~K}$. The chimney is heat insulated so that the gas undergoes adiabatic expansion. Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and the ratio of specific heats of the gas $\gamma=2$. Ignore atmospheric pressure.
Which of the following statement(s) is(are) correct?
Explanation
The process described is adiabatic. In an adiabatic process (a process during which no heat is gained or lost), the following relationship holds:
$P_1^{1-\gamma} \cdot T_1^\gamma = P_2^{1-\gamma} \cdot T_2^\gamma$
Where :
- $P_1$ and $P_2$ are the initial and final pressures,
- $T_1$ and $T_2$ are the initial and final temperatures,
- $\gamma$ is the ratio of specific heats (given as 2).
Given that $P_1 = 600 \, \text{Pa}$, $T_1 = 300 \, \text{K}$, $T_2 = 150 \, \text{K}$, and $\gamma = 2$, solve for $P_2$ :
$\frac{P_2}{P_1} = \left(\frac{T_1}{T_2}\right)^{\gamma/(1-\gamma)}$
$\Rightarrow P_2 = P_1 \left(\frac{T_1}{T_2}\right)^{\gamma/(1-\gamma)}$
$\Rightarrow P_2 = 600 \, \text{Pa} \times \left(\frac{300 \, \text{K}}{150 \, \text{K}}\right)^{2/(1-2)}$
$\Rightarrow P_2 = 150 \, \text{Pa}$
Using the ideal gas law in the form $\rho = \frac{PM}{RT}$ (where R is the specific gas constant), and rearranging to find the relationship between $\rho_1$ and $\rho_2$ :
$\frac{\rho_1}{\rho_2} = \frac{P_1}{P_2} \cdot \frac{T_2}{T_1}$
$\Rightarrow \rho_2 = \rho_1 \cdot \frac{P_2}{P_1} \cdot \frac{T_1}{T_2}$
$\Rightarrow \rho_2 = 0.2 \, \text{kg/m}^3 \cdot \frac{150 \, \text{Pa}}{600 \, \text{Pa}} \cdot \frac{300 \, \text{K}}{150 \, \text{K}}$
$\Rightarrow \rho_2 = 0.1 \, \text{kg/m} ^3$
Next, use the principle of conservation of mass flow rate to determine the velocity of the gas at the lower and upper ends.
Mass flow rate, $\frac{d m}{d t} = \rho_1 \cdot A_1 \cdot v_1 = \rho_2 \cdot A_2 \cdot v_2$,
The mass flow rate is conserved, and given by $\alpha = \rho \cdot A \cdot v$. Thus, you have:
$\alpha = \rho_1 \cdot A_1 \cdot v_1$
$\Rightarrow 0.8 \, \text{kg/s} = 0.2 \, \text{kg/m}^3 \cdot 0.1 \, \text{m}^2 \cdot v_1$
$\Rightarrow v_1 = \frac{0.8 \, \text{kg/s}}{0.2 \, \text{kg/m}^3 \cdot 0.1 \, \text{m}^2} = 40 \, \text{m/s}$
Similarly, for the upper end :
$\alpha = \rho_2 \cdot A_2 \cdot v_2$
$\Rightarrow v_2 = \frac{0.8 \, \text{kg/s}}{0.1 \, \text{kg/m}^3 \cdot 0.4 \, \text{m}^2} = 20 \, \text{m/s}$
Work done on the gas $=$ total energy $=\Delta \mathrm{K}+\Delta \mathrm{U}+$ internal energy
$$ \begin{aligned} & \mathrm{P}_1 \mathrm{~A}_1 \Delta x_1-\mathrm{P}_2 \mathrm{~A}_2 \Delta x_2=\frac{1}{2} \Delta m v_2^2-\frac{1}{2} \Delta m v_1^2+\Delta m g h+\frac{f}{2} \\\\ &\left(\mathrm{P}_2 \Delta \mathrm{V}_2-\mathrm{P}_1 \Delta \mathrm{V}_1\right) 2 \mathrm{P}_1 \frac{\Delta \mathrm{v}_1}{\Delta m}-2 \mathrm{P}_2 \frac{\Delta \mathrm{v}_2}{\Delta m}=\frac{\mathrm{v}_2^2-\mathrm{v}_1^2}{2}+g h \\\\ & \frac{2 \times 600}{0.2}-\frac{2 \times 150}{0.1}=\frac{20^2-40^2}{2}+10 \mathrm{~h} \\\\ & 6000-3000=\frac{400-1600}{2}+10 \mathrm{~h} \\\\ & 3000=-600+10 \mathrm{~h} \\\\ & 10 \mathrm{~h}=3000+600 \\\\ & \mathrm{~h}=360 \mathrm{~m} \end{aligned} $$
Comments (0)
