JEE Advance - Physics (2021 - Paper 2 Online - No. 16)
The value of $${Q \over {R{T_0}}}$$ is
$$4(2\sqrt 2 + 1)$$
$$4(2\sqrt 2 - 1)$$
$$(5\sqrt 2 + 1)$$
$$(5\sqrt 2 - 1)$$
Explanation
$$Q = \Delta U = \Delta {U_1} + \Delta {U_2}$$
$$\Delta {U_2} = 1 \times 2R \times (\sqrt 2 {T_0} - {T_0}) + 2R{T_0}(\sqrt 2 - 1)$$
For $$\Delta$$U2 : Using mole conservation of left side.
$${{{p_0}{V_0}} \over {R{T_0}}} = {{2\sqrt 2 {p_0}{{3{V_0}} \over 2}} \over {R{T_L}}} \Rightarrow {T_L} = 3\sqrt 2 {T_0}$$
$$\Delta {U_1} = 1 \times 2R \times (3\sqrt 2 {T_0} - {T_0}) = 2R{T_0}(3\sqrt 2 - 1)$$
$$Q = 2R{T_0}(\sqrt 2 - 1) + 2R{T_0}(3\sqrt 2 - 1) = 2R{T_0}(4\sqrt 2 - 2)$$
$${{\Delta Q} \over {R{T_0}}} = 2(4\sqrt 2 - 1)$$
$$\Delta {U_2} = 1 \times 2R \times (\sqrt 2 {T_0} - {T_0}) + 2R{T_0}(\sqrt 2 - 1)$$
For $$\Delta$$U2 : Using mole conservation of left side.
$${{{p_0}{V_0}} \over {R{T_0}}} = {{2\sqrt 2 {p_0}{{3{V_0}} \over 2}} \over {R{T_L}}} \Rightarrow {T_L} = 3\sqrt 2 {T_0}$$
$$\Delta {U_1} = 1 \times 2R \times (3\sqrt 2 {T_0} - {T_0}) = 2R{T_0}(3\sqrt 2 - 1)$$
$$Q = 2R{T_0}(\sqrt 2 - 1) + 2R{T_0}(3\sqrt 2 - 1) = 2R{T_0}(4\sqrt 2 - 2)$$
$${{\Delta Q} \over {R{T_0}}} = 2(4\sqrt 2 - 1)$$
Comments (0)
