JEE Advance - Physics (2021 - Paper 2 Online - No. 14)
The work done in bringing the dipole from infinity to a distance r from the center of the loop by the given process is proportional to
m/r5
m2/r5
m2/r6
m2/r7
Explanation
$$\phi = Li = {{{\mu _0}m} \over {2\pi {r^3}}} \times \pi {a^2}$$
$$ \Rightarrow i = {{{\mu _0}m\pi {a^2}} \over {2\pi {r^3}L}} \Rightarrow i \propto {m \over {{r^3}}}$$
$$m' = \pi {a^2}i = {{{\mu _0}m{\pi ^2}{a^4}} \over {2\pi {r^3}L}}$$
$$F = {{k{m^2}{\pi ^2}{a^4}} \over {2\pi {r^7}L}}$$
$$W = \int {Fdr \propto \int {{{{m^2}dr} \over {{r^7}}} \Rightarrow W \propto {{{m^2}} \over {{r^6}}}} } $$
$$ \Rightarrow i = {{{\mu _0}m\pi {a^2}} \over {2\pi {r^3}L}} \Rightarrow i \propto {m \over {{r^3}}}$$
$$m' = \pi {a^2}i = {{{\mu _0}m{\pi ^2}{a^4}} \over {2\pi {r^3}L}}$$
$$F = {{k{m^2}{\pi ^2}{a^4}} \over {2\pi {r^7}L}}$$
$$W = \int {Fdr \propto \int {{{{m^2}dr} \over {{r^7}}} \Rightarrow W \propto {{{m^2}} \over {{r^6}}}} } $$
Comments (0)
