JEE Advance - Physics (2021 - Paper 1 Online - No. 3)

An extended object is placed at point O, 10 cm in front of a convex lens L1 and a concave lens L2 is placed 10 cm behind it, as shown in the figure. The radii of curvature of all the curved surfaces in both the lenses ae 20 cm. The refractive index of both the lenses is 1.5. The total magnification of this lens system is

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 35 English
0.4
0.8
1.3
1.6

Explanation

Focal length of convex lens f1,

Therefore $${1 \over {{f_1}}} = (\mu - 1)\left[ {{1 \over {{R_1}}} - {1 \over {{R_2}}}} \right] = (1.5 - 1)\left[ {{1 \over {20}} - \left( {{1 \over { - 20}}} \right)} \right]$$

$$\Rightarrow$$ f1 = + 20 cm

Focal length of concave lens f2,

$$\therefore$$ $${1 \over {{f_2}}} = (\mu - 1)\left[ {{1 \over {{R_1}}} - {1 \over {{R_2}}}} \right]$$

$${1 \over {{f_2}}} = (1.5 - 1)\left[ { - {1 \over {20}} - {1 \over {20}}} \right] = {1 \over { - 20}}$$

$$\Rightarrow$$ f2 = $$-$$ 20 cm

For lens 1

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 35 English Explanation
$${1 \over v} - {1 \over u} = {1 \over f}$$

$$\Rightarrow$$ v = $$-$$ 20 cm

$${m_1} = {v \over u} = {{ - 20} \over { - 10}} = 2$$

For lens 2

u = $$-$$ 30n cm, f = $$-$$ 20 cm,

$${1 \over v} - {1 \over u} = {1 \over f}$$

v = $$-$$ 12 cm

$${m_2} = {v \over u} = {{ - 12} \over { - 30}} = {2 \over 5}$$

Net magnification,

$$m = {m_1}{m_2} = 2 \times {2 \over 5} = {4 \over 5} = 0.8$$

Comments (0)

Advertisement