JEE Advance - Physics (2021 - Paper 1 Online - No. 12)

A wide slab consisting of two media of refractive indices n1 and n2 is placed in air as shown in the figure. A ray of light is incident from medium n1 to n2 at an angle $$\theta$$, where sin$$\theta$$ is slightly larger than 1/n1. Take refractive index of air as 1. Which of the following statement(s) is(are) correct?

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 36 English
The light ray enters air if n2 = n1
The light ray is finally reflected back into the medium of refractive index n1 if n2 < n1
The light ray is finally reflected back into the medium of refractive index n1 if n2 > n1
The light ray is reflected back into the medium of refractive index n1 if n2 = 1

Explanation

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 36 English Explanation 1
$$\sin \theta > {1 \over {{n_1}}}$$ (Given)

i.e., $$\sin {\theta _1} > {1 \over {{n_1}}}$$

$${n_1}\sin {\theta _1} = {n_2}\sin {\theta _2}$$

$$\sin {\theta _2} = {{{n_1}\sin {\theta _1}} \over {{n_2}}}$$

if $${n_1} = {n_2}$$ then $${\theta _2} = {\theta _1}$$

$${n_2}\sin {\theta _2} = (1)\sin {\theta _3}$$

$$\sin {\theta _3} = {n_2}\sin {\theta _2}$$

$$\sin {\theta _3} = {n_1}\sin {\theta _1}$$

$$\sin {\theta _1} = {{\sin {\theta _3}} \over {{n_1}}} > {1 \over {{n_1}}}$$

$$\sin {\theta _3} > 1$$

$${\theta _3} > 90^\circ $$

This means ray cannot enter air.

For $${n_1} > {n_2};\sin {\theta _1} = {{{n_2}} \over {{n_1}}}\sin {\theta _2} > {1 \over {{n_1}}}$$

$$\sin {\theta _2} > {1 \over {{n_2}}}$$

For surface 2 - air interface

$${n_2}\sin {\theta _2} = \sin {\theta _3}$$

$$\sin {\theta _2} = {{\sin {\theta _3}} \over {{n_2}}} > {1 \over {{n_2}}}$$

$${\theta _2} > 90^\circ $$

It means ray is reflected back in medium-2

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 36 English Explanation 2
For surface 1 and surface 2 interface

$${n_2}\sin {\theta _2} = {n_1}\sin {\theta _1}$$

$$\sin {\theta _{2C}} = {{{n_1}} \over {{n_2}}}$$

$${\theta _{2C}}$$ : critical angle

For ray to enter medium - 1

$${\theta _2} < {\theta _{2C}}$$

$$\sin {\theta _2} < \sin 2{\theta _C}$$

$${{{n_1}} \over {{n_2}}}\sin {\theta _1} < {{{n_1}} \over {{n_2}}}$$

$$\sin {\theta _1} < 1$$

$${\theta _1} < 90^\circ $$, which is true.

Hence, ray enters medium - 1

For $${n_2} > {n_1}$$

$${{{n_2}} \over {{n_1}}}\sin {\theta _2} > {{{n_2}} \over {{n_1}}}$$

$$\sin {\theta _2} > {1 \over {{n_2}}}$$

For surface 2 - air interface

$${n_2}\sin {\theta _2} = \sin {\theta _3}$$

$$\sin {\theta _2} = {{\sin {\theta _3}} \over {{n_2}}} > {1 \over {{n_2}}}$$

$${\theta _2} > 90$$

It means ray reflected back in medium - 2

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 36 English Explanation 3
$${n_2}\sin {\theta _2} = {n_1}\sin {\theta _1}$$

$$\sin {\theta _1} = {{{n_2}} \over {{n_1}}}\sin {\theta _2}$$

$$\sin {\theta _{2C}} = {{{n_1}} \over {{n_2}}};{\theta _{2C}}$$ $$\to$$ critical angle

For ray to enter medium - 1

$${\theta _2} < {\theta _{2C}}$$

$$\sin {\theta _2} < \sin {\theta _{2C}}$$

$${{{n_1}} \over {{n_2}}}\sin {\theta _1} < {{{n_1}} \over {{n_2}}}$$

$$\sin {\theta _1} < 1$$

$${\theta _1} = 90^\circ $$, which is true.

Hence, ray enters medium - 1

Let, n2 = 1

JEE Advanced 2021 Paper 1 Online Physics - Geometrical Optics Question 36 English Explanation 4
$${n_1}\sin {\theta _1} = {n_2}\sin {\theta _2} \Rightarrow {n_2} = 1$$

$${n_1}\sin {\theta _1} = \sin {\theta _2}$$

$$\sin {\theta _1} = {{\sin {\theta _2}} \over {{n_1}}} > {1 \over {{n_1}}}$$

$$\sin {\theta _2} > 1 \Rightarrow {\theta _2} = 90^\circ $$

$$\therefore$$ Ray is reflected back in medium.

Comments (0)

Advertisement