JEE Advance - Physics (2020 - Paper 2 Offline - No. 13)

A spherical bubble inside water has radius R. Take the pressure inside the bubble and the water pressure to be p0. The bubble now gets compressed radially in an adiabatic manner so that its radius becomes (R $$-$$ a). For a << R the magnitude of the work done in the process in given by (4$$\pi$$p0Ra2)X, where X is a constant and $$\gamma$$ = Cp/Cv = 41/30. The value of X is ________.
Answer
2.05

Explanation

As change in the kinetic energy of the surface of the bubble is zero.

$$ \therefore $$ Wexternal + Wwater + Wgas = 0 ....(i)

where Wexternal = work done by external agent

Wwater = work done by water

Wgas = work done by gas

For adiabatic process, $${P_1}V_1^\gamma = {P_2}V_2^\gamma $$

Here, $${P_0}{\left[ {{4 \over 3}\pi {R^3}} \right]^{{{41} \over {30}}}} = P{\left[ {{4 \over 3}\pi {{\left( {R - a} \right)}^3}} \right]^{{{41} \over {30}}}}$$

$$ \Rightarrow $$ P = $${P_0}{\left[ {{R \over {R - a}}} \right]^{{{41} \over {10}}}}$$

Now, Wgas = $${{{P_1}{V_1} - {P_2}{V_2}} \over {\gamma - 1}}$$

= $${{{P_0} \times {4 \over 3}\pi {R^3} - P \times {4 \over 3}\pi {{\left( {R - a} \right)}^3}} \over {{{41} \over {30}} - 1}}$$

= $${{{P_0} \times {4 \over 3}\pi {R^3} - {P_0}{{\left[ {{R \over {R - a}}} \right]}^{{{41} \over {10}}}} \times {4 \over 3}\pi {{\left( {R - a} \right)}^3}} \over {{{41} \over {30}} - 1}}$$

= $${{{P_0} \times {4 \over 3}\pi {R^3}\left[ {1 - {{\left( {{R \over {R - a}}} \right)}^{{{41} \over {10}}}}{{\left( {{{R - a} \over R}} \right)}^3}} \right]} \over {{{11} \over {30}}}}$$

= $${{{40} \over {11}}{P_0}\pi {R^3}\left[ {1 - {{\left( {{{R - a} \over R}} \right)}^{ - {{41} \over {10}}}}{{\left( {{{R - a} \over R}} \right)}^3}} \right]}$$

= $${{40} \over {11}}{P_0}\pi {R^3}\left[ {1 - {{\left( {1 - {a \over R}} \right)}^{ - {{11} \over {10}}}}} \right]$$

= $${{40} \over {11}}{P_0}\pi {R^3}\left[ {1 - 1 - {{11a} \over {10R}} - {{\left( { - {{11} \over {10}}} \right)\left( { - {{11} \over {10}} - 1} \right)} \over 2}{{{a^2}} \over {{R^2}}}} \right]$$

= -4P0$$\pi $$R2$$a$$ - $${{40 \times 21} \over {100 \times 2}}{P_0}\pi R{a^2}$$

= -4P0$$\pi $$R2$$a$$ - $$4.2{P_0}\pi R{a^2}$$

Wwater = P0dV

= P0$${\left[ {{4 \over 3}\pi {R^3} - {4 \over 3}\pi {{\left( {R - a} \right)}^3}} \right]}$$

= $${{{4{P_0}} \over 3}\pi \left[ {{R^3} - {{\left( {R - a} \right)}^3}} \right]}$$

= $${{{4{P_0}} \over 3}\pi \left[ {\left[ {R - \left( {R - a} \right)} \right]\left[ {{R^2} + R\left( {R - a} \right) + {{\left( {R - a} \right)}^2}} \right]} \right]}$$

= $${{{4{P_0}} \over 3}\pi \left[ {\left[ a \right]\left[ {3{R^2} - 3Ra + {a^2}} \right]} \right]}$$

= $${{{4{P_0}} \over 3}\pi \left[ {\left( {3{R^2}a - 3R{a^2} + {a^3}} \right)} \right]}$$

= $${4{P_0}\pi \left[ {{R^2}a - R{a^2}} \right]}$$ [ignore $${{a^3}}$$ term as no $${{a^3}}$$ term in the question]

$$ \therefore $$ Wgas + Wwater = -$$4{P_0}\pi R{a^2}$$ - $$4.2{P_0}\pi R{a^2}$$

= $$ - 4{P_0}\pi R{a^2}\left[ {1 + 1.05} \right]$$

= $$ - 4{P_0}\pi R{a^2}\left[ {2.05} \right]$$

From (i), Wexternal = - (Wgas + Wwater)

= $$4{P_0}\pi R{a^2}\left[ {2.05} \right]$$

$$ \therefore $$ X = 2.05

Comments (0)

Advertisement