JEE Advance - Physics (2019 - Paper 2 Offline - No. 9)

Suppose a $$_{88}^{226}Ra$$ nucleus at rest and in ground state undergoes $$\alpha $$-decay to a $$_{86}^{222}Rn$$ nucleus in its excited state. The kinetic energy of the emitted $$\alpha $$ particle is found to be 4.44 MeV. $$_{86}^{222}Rn$$ nucleus then goes to its ground state by $$\gamma $$-decay. The energy of the emitted $$\gamma $$ photon is ............ keV.

[Given : atomic mass of $$_{86}^{226}Ra$$ = 226.005 u, atomic of $$_{86}^{222}Rn$$ = 222.000 u, atomic mass of $$\alpha $$ particle = 4.000 u, 1 u = 931 MeV/e2, c is speed of the light]
Answer
135

Explanation

Given, atomic mass of ${ }_{88}^{226} \mathrm{R} a=226.005 u$,

atomic mass of ${ }_{86}^{222} \mathrm{R} n=222.000 u$.

atomic mass of $\alpha$ particle $=4.000 u$

$$ 1 u=931 \frac{\mathrm{MeV}}{c^2} $$

where, c = speed of the light

$$ { }_{88}^{226} \mathrm{R} a \stackrel{\alpha-\text { decay }}{\longrightarrow}{ }_{86}^{222} \mathrm{R} n+{ }_2^4 \mathrm{He} $$

Total energy emitted $=(\Delta m) c^2$

$$ \begin{aligned} & =[226.005-(222+14)] \times 931.5 \mathrm{Mev} \\\\ & =0.005 \times 931.5 \mathrm{MeV} \end{aligned} $$

Kinetic energy of $\alpha=4.44 \mathrm{MeV}$

Kinetic energy of Rn = $$4.44 \mathrm{MeV} \times \frac{4}{222}$$ = 0.08 MeV

$$ \begin{aligned} & \text { Energy of photon }(\gamma)=(\Delta m) c^2-\left(k . \mathrm{E}_\alpha+k \mathrm{E}_{\mathrm{R} n}\right) \\\\ & \mathrm{E}_r=[[0.05 \times 931.5]-(4.44+0.08)] \mathrm{MeV} \\\\ & \mathrm{E}_r=[4.655-4.52] \mathrm{MeV} \\\\ & \mathrm{E}_r=0.135 \mathrm{MeV}=0.135 \times 10^3 \mathrm{keV} \\\\ & \mathrm{E}_r=135 \mathrm{keV} \end{aligned} $$

Comments (0)

Advertisement