JEE Advance - Physics (2019 - Paper 2 Offline - No. 17)
If the process on one mole of monatomic ideal gas is as shown in the TV-diagram with $${P_0}{V_0} = {1 \over 3}R{T_0}$$, the correct match is,


I $$ \to $$ P, II $$ \to $$ R, III $$ \to $$ T, IV $$ \to $$ S
I $$ \to $$ P, II $$ \to $$ T, III $$ \to $$ Q, IV $$ \to $$ T
I $$ \to $$ S, II $$ \to $$ T, III $$ \to $$ Q, IV $$ \to $$ U
I $$ \to $$ P, II $$ \to $$ R, III $$ \to $$ T, IV $$ \to $$ P
Explanation
1-2 process is isothermal and 2-3 process is isochoric.
(I) $${W_{1 \to 2}} = nRI\,\ln {{{V_f}} \over {{V_i}}} = 1 \times R{{{T_0}} \over 3}\,\ln {{{V_2}} \over {{V_1}}}$$
W2$$ \to $$3 = 0 (Isochoric process)
$${W_{1 \to 2 \to 3}}$$ = $${W_{1 \to 2}}$$ + $${W_{2 \to 3}}$$
= $${{R{T_0}} \over 3}$$ ln 2(I$$ \to $$P)
(II) $$\Delta U = {f \over 2}nR({T_f} - {T_i})$$
$$\Delta {U_{1 \to 2 \to 3}} = {3 \over 2}\left[ {{T_0} - {{{T_0}} \over 3}} \right]$$
$$ = R{T_0}$$ (II$$ \to $$R)
(III) $${Q_{1 \to 2 \to 3}} = \Delta {U_{1 \to 2 \to 3}} + {W_{1 \to 2 \to 3}}$$
(First law of thermodynamics)
$$ = R{T_0} + {{R{T_0}} \over 3}\ln 2$$
$${{R{T_0}} \over 3}[3 + \ln 2]$$ (III$$ \to $$T)
(IV) $${Q_{1 \to 2}} = \Delta {U_{1 \to 2}} + {W_{1 \to 2}} = 0 + {{R{T_0}} \over 3}ln2 = {{R{T_0}} \over 3}ln2$$ (IV$$ \to $$P)
(I) $${W_{1 \to 2}} = nRI\,\ln {{{V_f}} \over {{V_i}}} = 1 \times R{{{T_0}} \over 3}\,\ln {{{V_2}} \over {{V_1}}}$$
W2$$ \to $$3 = 0 (Isochoric process)
$${W_{1 \to 2 \to 3}}$$ = $${W_{1 \to 2}}$$ + $${W_{2 \to 3}}$$
= $${{R{T_0}} \over 3}$$ ln 2(I$$ \to $$P)
(II) $$\Delta U = {f \over 2}nR({T_f} - {T_i})$$
$$\Delta {U_{1 \to 2 \to 3}} = {3 \over 2}\left[ {{T_0} - {{{T_0}} \over 3}} \right]$$
$$ = R{T_0}$$ (II$$ \to $$R)
(III) $${Q_{1 \to 2 \to 3}} = \Delta {U_{1 \to 2 \to 3}} + {W_{1 \to 2 \to 3}}$$
(First law of thermodynamics)
$$ = R{T_0} + {{R{T_0}} \over 3}\ln 2$$
$${{R{T_0}} \over 3}[3 + \ln 2]$$ (III$$ \to $$T)
(IV) $${Q_{1 \to 2}} = \Delta {U_{1 \to 2}} + {W_{1 \to 2}} = 0 + {{R{T_0}} \over 3}ln2 = {{R{T_0}} \over 3}ln2$$ (IV$$ \to $$P)
Comments (0)
