JEE Advance - Physics (2018 - Paper 2 Offline - No. 17)
LIST - I | LIST - II | ||
---|---|---|---|
P. | $$\overrightarrow r $$(t)=$$\alpha $$ $$t\,\widehat i + \beta t\widehat j$$ | 1. | $$\overrightarrow p $$ |
Q. | $$\overrightarrow r \left( t \right) = \alpha \cos \,\omega t\,\widehat i + \beta \sin \omega t\,\widehat j$$ | 2. | $$\overrightarrow L $$ |
R. | $$\overrightarrow r \left( t \right) = \alpha \left( {\cos \omega t\,\widehat i + \sin \omega t\widehat j} \right)$$ | 3. | K |
S. | $$\overrightarrow r \left( t \right) = \alpha t\,\widehat i + {\beta \over 2}{t^2}\widehat j$$ | 4. | U |
5. | E |
Explanation
The linear momentum $$\overrightarrow p $$ of a particle is conserved if force on it is zero i.e., $$\overrightarrow F = m\overrightarrow a = \overrightarrow 0 $$. If $$\overrightarrow p $$ is conserved then kinetic energy $$K = {p^2}/2m$$ is also conserved. The angular momentum $$\overrightarrow L $$ of a particle is conserved if torque on it is zero i.e., $$\overrightarrow \tau = \overrightarrow r \times \overrightarrow F = \overrightarrow 0 $$. The total energy E is conserved for conservative forces.
For P : $$\overrightarrow r (t) = \alpha t\widehat i + \beta t\widehat j$$
$$\overrightarrow v = {{d\overrightarrow r } \over {dt}} = \alpha \widehat i + \beta \widehat j$$ = constant
$$ \Rightarrow \overrightarrow p $$ is constant (conserved)
Now, $$\left| {\overrightarrow v } \right| = \sqrt {{\alpha ^2} + {\beta ^2}} $$ = constant
Therefore, $$K = {1 \over 2}m{v^2}$$ is constant (conserved)
Now, $$\overrightarrow a = {{d\overrightarrow v } \over {dt}} = 0 \Rightarrow \overrightarrow F = m\overrightarrow a = 0$$
Thus, $$F = \nabla U \Rightarrow U$$ is constant (conserved)
Now, $$E = U + K \Rightarrow E$$ is constant, since U and K are constant
Now, $$\overrightarrow L = m(\overrightarrow r \times \overrightarrow v ) = 0 \Rightarrow \overrightarrow L $$ is constant (conserved)
Thus, the correct mapping is $$P \to 1,2,3,4,5$$.
For Q : $$\overrightarrow r (t) = \alpha \cos \omega t\,\widehat i + \beta \sin \omega t\,\widehat j$$
$$ \Rightarrow v = {{d\overrightarrow r } \over {dt}} = - \alpha \omega \sin \omega t\,\widehat i + \beta \omega \cos \omega t\,\widehat j$$
So v is not a constant $$ \Rightarrow \overrightarrow p $$ is not conserved for the path.
Now, $$\left| {\overrightarrow v } \right| = \sqrt {{\alpha ^2}{\omega ^2}{{\sin }^2}\omega t + {\beta ^2}{\omega ^2}\sin \omega t} $$ which is not constant. Therefore,
$$K = {1 \over 2}m{v^2}$$ is not constant (not conserved)
Now, $$\overrightarrow a = {{d\overrightarrow v } \over {dt}} = - \alpha {\omega ^2}\cos \omega t\,\widehat i + \beta {\omega ^2}\sin \omega t\,\widehat j$$
$$ \Rightarrow \overrightarrow a $$ is not constant
$$ \Rightarrow \overrightarrow F $$ is not constant
$$ \Rightarrow \overrightarrow U $$ is not constant (not conserved)
E = U + K is constant (conserved)
Now, $$\overrightarrow L = m(\overrightarrow r \times \overrightarrow v ) = m\omega \alpha \beta \widehat k$$
$$ \Rightarrow \overrightarrow L $$ is constant (conserved)
Thus, the correct mapping is $$Q \to 2,5$$.
For R : $$\overrightarrow r (t) = \alpha (\cos \omega t\,\widehat i + \sin \omega t\,\widehat j)$$
$$\overrightarrow v = {{d\overrightarrow r } \over {dt}} = \alpha \omega ( - \sin \omega t\,\widehat i + \cos \omega t\,\widehat j)$$
$$ \Rightarrow \overrightarrow v $$ is not a constant
$$ \Rightarrow \overrightarrow p $$ is not a constant (not conserved)
Now, $$\left| {\overrightarrow v } \right| = \sqrt {{\alpha ^2}{\omega ^2}({{\sin }^2}\omega t + {{\cos }^2}\omega t)} = \alpha \omega $$
$$ \Rightarrow \left| {\overrightarrow v } \right|$$ is constant
$$ \Rightarrow K = {1 \over 2}m{v^2}$$ is a constant (conserved)
Now, $$\overrightarrow a = {{dv} \over {dt}} = \alpha {\omega ^2}( - \sin \omega t\,\widehat i - \cos \omega t\,\widehat j)$$
$$ \Rightarrow \overrightarrow a $$ is not constant
Since $$ E = U + K$$ is constant (conserved)
$$\Rightarrow U$$ is constant (conserved)
Now, $$\overrightarrow L = m(\overrightarrow r \times \overrightarrow v ) = m\omega {\alpha ^2}\widehat k$$
$$ \Rightarrow \overrightarrow L $$ is constant (conserved)
Thus, the correct mapping is $$R \to 2,3,4,5.$$
For S : $$\overrightarrow r (t) = \alpha t\,\widehat i + {\beta \over 2}{t^2}\,\widehat j$$
$$\overrightarrow v = {{d\overrightarrow r } \over {dt}} = \alpha \widehat i + \beta t\,\widehat j$$
$$ \Rightarrow \overrightarrow v $$ is not conserved
$$ \Rightarrow \overrightarrow p $$ is not conserved
Now, $$\left| {\overrightarrow v } \right| = \sqrt {{\alpha ^2} + {\beta ^2}\,{t^2}} $$
$$ \Rightarrow \left| {\overrightarrow v } \right|$$ is not conserved
$$ \Rightarrow K = {1 \over 2}m{v^2}$$ is not conserved
$$\overrightarrow a = {{d\overrightarrow v } \over {dt}} = \beta \widehat j$$
$$ \Rightarrow E = U + K$$ is conserved
But, U is not conserved.
Now, $$\overrightarrow L = m(\overrightarrow r \times \overrightarrow v ) = {1 \over 2}\alpha \beta {t^2}\widehat k$$
$$ \Rightarrow \overrightarrow L $$ is not conserved.
Thus, the correct mapping is $$S \to 5$$.
Therefore, option (A) is correct.
Comments (0)
