JEE Advance - Physics (2018 - Paper 2 Offline - No. 15)

A planet of mass $$M,$$ has two natural satellites with masses $${m_1}$$ and $${m_2}.$$ The radii of their circular orbits are $${R_1}$$ and $${R_2}$$ respectively, Ignore the gravitational force between the satellites. Define $${v_1},{L_1},{K_1}$$ and $${T_1}$$ to be , respectively, the orbital speed, angular momentum, kinetic energy and time period of revolution of satellite $$1$$; and $${v_2},{L_2},{K_2},$$ and $${T_2}$$ to be the corresponding quantities of satellite $$2.$$ Given $${m_1}/{m_2} = 2$$ and $${R_1}/{R_2} = 1/4,$$ match the ratios in List-$${\rm I}$$ to the numbers in List-$${\rm II}.$$

LIST - I LIST - II
P. v1/v2 1. 1/8
Q. L1/L2 2. 1
R. K1/K2 3. 2
S. T1/T2 4. 8
$$P \to 4;Q \to 2;R \to 1;S \to 3$$
$$P \to 3;Q \to 2;R \to 4;S \to 1$$
$$P \to 2;Q \to 3;R \to 1;S \to 4$$
$$P \to 2;Q \to 3;R \to 4;S \to 1$$

Explanation

Given : $${{{m_1}} \over {{m_2}}} = 2$$ and $${{{R_1}} \over {{R_2}}} = {1 \over 4}$$

JEE Advanced 2018 Paper 2 Offline Physics - Gravitation Question 12 English Explanation

Now,

$${{GMm} \over {{R^2}}} = {{m{v^2}} \over R}$$

$$ \Rightarrow {{GM} \over R} = {v^2} \Rightarrow v = \sqrt {{{GM} \over R}} $$

$$ \Rightarrow {{{v_1}} \over {{v_2}}} = {{\sqrt {{{GM} \over {{R_1}}}} } \over {\sqrt {{{GM} \over {{R_2}}}} }} \Rightarrow {{{v_1}} \over {{v_2}}} = \sqrt {{{{R_2}} \over {{R_1}}}} $$

$$ \Rightarrow {{{v_1}} \over {{v_2}}} = \sqrt {{4 \over 1}} \Rightarrow {{{v_1}} \over {{v_2}}} = 2$$

Thus, the correct mapping is P $$\to$$ 3.

Now, L = mvR

$$ \Rightarrow {{{L_1}} \over {{L_2}}} = {{{m_1}{v_1}{R_1}} \over {{m_2}{v_2}{R_2}}} = {{{m_1}} \over {{m_2}}} \times {{{v_1}} \over {{v_2}}} \times {{{R_1}} \over {{R_2}}}$$

$$ \Rightarrow {{{L_1}} \over {{L_2}}} = 2 \times 2 \times {1 \over 4} = 1$$

Thus, the correct mapping is Q $$\to$$ 2.

Now,

$$K = {1 \over 2}m{v^2}$$

$$ \Rightarrow {{{K_1}} \over {{K_2}}} = {{{1 \over 2}{m_1}v_1^2} \over {{1 \over 2}{m_2}v_2^2}} = {{{m_1}} \over {{m_2}}} \times {\left( {{{{v_1}} \over {{v_2}}}} \right)^2}$$

$$ \Rightarrow {{{K_1}} \over {{K_2}}} = 2 \times {(2)^2} = 8$$

Thus, the correct mapping is R $$\to$$ R.

Now,

$$T = {{2\pi R} \over v}$$

$$ \Rightarrow {{{T_1}} \over {{T_2}}} = {{{{2\pi {R_1}} \over {{v_1}}}} \over {{{2\pi {R_2}} \over {{v_2}}}}} \Rightarrow {{{T_1}} \over {{T_2}}} = {{{R_1}} \over {{R_2}}} \times {{{v_2}} \over {{v_1}}}$$

$$ \Rightarrow {{{T_1}} \over {{T_2}}} = {1 \over 4} \times {1 \over 2} \Rightarrow {{{T_1}} \over {{T_2}}} = {1 \over 8}$$

Thus, the correct mapping is S $$\to$$ 1.

Therefore, option (B) is correct.

Comments (0)

Advertisement