JEE Advance - Physics (2018 - Paper 2 Offline - No. 10)
Explanation
We know that $$\Delta L = {W \over {(YA/L)}}$$
where W is weight or load = mg = 1.2 $$\times$$ 10 = 12 kg m s$$-$$2, Y is Young's modulus = 2 $$\times$$ 1011 N m$$-$$2, L is length of wire with load = 1.0 m, A is area of steel wire = $$ = \pi {r^2} = {\pi \over 4}{d^2} = {\pi \over 4} \times {(0.5 \times {10^{ - 3}})^2}$$
Therefore,
$$\Delta L = {{1.2 \times 10} \over {2 \times {{10}^{11}} \times {\pi \over 4}{{(0.5 \times {{10}^{ - 3}})}^2} \times {1 \over {1.0\,m}}}}$$
$$ = {{1.2 \times 10 \times 4} \over {2 \times {{10}^{11}} \times \pi \times {{(0.5)}^2} \times {{10}^{ - 6}}}}$$
$$ \Rightarrow \Delta L = 0.3 \times {10^{ - 3}}$$ m = 0.3 mm
Now, least count of vernier scale $$ = \left( {1 - {9 \over {10}}} \right)$$ mm = 0.1 mm
Therefore, Vernier reading $$ = {{\Delta L} \over {least\,count}}$$
Vernier reading $$ = {{0.3\,mm} \over {0.1\,mm}} = 3$$
Therefore, 3rd vernier scale division coincides with the main scale division.
Comments (0)
