JEE Advance - Physics (2018 - Paper 1 Offline - No. 5)
Explanation
From given data, we can draw the figure below.
Now, frequency of man behind is
$${f_1} = f\left( {{v \over {v - {v_s}\cos \theta }}} \right)$$
where, x is speed of sound in air, vs is speed of man and f is frequency of whistle. Therefore,
$${f_1} = 1430\left( {{{330} \over {330 - 2 \times {5 \over {13}}}}} \right)$$
Frequency of man in front is
$${f_2} = f\left( {{v \over {v + {v_s}\cos \theta }}} \right) = 1430\left( {{{330} \over {330 + 1 \times {5 \over {13}}}}} \right)$$
Now, frequency of beat is given as
$$\Delta f = {f_1} - {f_2}$$
$$ = 1430\left( {{{330} \over {330 - {{10} \over {13}}}}} \right) - 1430\left( {{{330} \over {330 - {5 \over {13}}}}} \right)$$
$$ = 1430 \times 330\left( {\left[ {{1 \over {330 - {{10} \over {13}}}}} \right] - \left[ {{1 \over {330 - {5 \over {13}}}}} \right]} \right)$$
$$ = 1430 \times 330\left[ {{{13} \over {4280}} - {{13} \over {4295}}} \right]$$
$$ = {{1430 \times 330 \times 13 \times 15} \over {4280 \times 4295}}$$ = 5.0058 Hz $$\approx$$ 5.00 Hz
Comments (0)
