JEE Advance - Physics (2018 - Paper 1 Offline - No. 1)
Explanation
The vector $$\overrightarrow A = \alpha \widehat i$$ has a magnitude a and its direction is fixed. The vector $$\overrightarrow B = a(\cos \omega t\widehat i + \sin \omega t\widehat j)$$ rotates with an angular speed $$\omega$$ = $$\pi$$ / 6 rad/s in a circle of radius a. The magnitude of the sum and the difference of these vectors are given by
$$\left| {\overrightarrow A + \overrightarrow B } \right| = \left| {(a + a\cos \omega t)\widehat i + a\sin \omega t\widehat j} \right|$$
$$ = a\sqrt {{{(1 + \cos \omega t)}^2} + {{\sin }^2}\omega t} $$
$$ = 2a\cos (\omega t/2)$$.
$$\left| {\overrightarrow A - \overrightarrow B } \right| = \left| {(a - a\cos \omega t)\widehat i - a\sin \omega t\widehat j} \right|$$
$$ = 2a\sin (\omega t/2)$$
Hence,
$${{\left| {\overrightarrow A - \overrightarrow B } \right|} \over {\left| {\overrightarrow A + \overrightarrow B } \right|}} = \tan {{\omega t} \over 2} = {1 \over {\sqrt 3 }}$$,
which gives $$t = \tau = (2/\omega )(\pi /6) = 2$$ s.
Comments (0)
