JEE Advance - Physics (2017 - Paper 2 Offline - No. 6)
Explanation
Given : Mass of the sun, Ms = 3 $$\times$$ 105 $$\times$$ mass of the earth = 3 $$\times$$ 105 Me
Distance between the sun and the earth,
d = 2.5 $$\times$$ 104 $$\times$$ radius of the earth = 2.5 $$\times$$ 104 Re,
Escape speed, ve = 11.2 km s$$-$$1
$$\therefore$$ $${v_e} = \sqrt {{{2G{M_e}} \over {{R_e}}}} = 11.2$$ km s$$-$$1
Minimum velocity required for the rocket to escape the given earth $$-$$ sun system = vs
Using energy conservation for the given situation,
$${1 \over 2}mv_s^2 = {{G{M_e}m} \over {{R_e}}} + {{G{M_s}m} \over {d + {R_e}}} = {{G{M_e}m} \over {{R_e}}} + {{G \times 3 \times {{10}^5}{M_e}m} \over {(2.5 \times {{10}^4}{R_e} + {R_e})}}$$
$$\therefore$$ $$v_s^2 = {{2G{M_e}} \over {{R_e}}} + {{24G{M_e}} \over {{R_e}}}$$ ($$\because$$ 2.5 $$\times$$ 104 >> 1)
$$ \Rightarrow v_s^2 = v_e^2 + 12v_e^2 = 13v_e^2$$
or $${v_s} = \sqrt {13} $$ ve = 40.38 km s$$-$$1 $$\approx$$ 42 km s$$-$$1
Comments (0)
