JEE Advance - Physics (2017 - Paper 1 Offline - No. 7)
Which of the following options is/are correct?
$$A = {1 \over 2}{\cos ^{ - 1}}\left( {{\mu \over 2}} \right)$$
$${i_1} = {\sin ^{ - 1}}\left[ {\sin A\sqrt {4{{\cos }^2}{A \over 2} - 1} - \cos A} \right]$$
Explanation
We discuss the options as follows:
$$\bullet$$ For option (A) : For the angle of incidence i1 = A, we have minimum deviation and the ray inside the prism is parallel to the base of the prism.
Hence, option (A) is correct.
$$\bullet$$ For option (C) : The angle of deviation is given as
$$\delta$$ = i1 + i2 $$-$$ A
At minimum deviation, i1 = i2 and r1 = r2. Therefore,
i1 = A ....... (1)
Also, we know that
r1 + r2 = A
As r1 = r2, we get
2r1 = A $$\Rightarrow$$ r1 = $${A \over 2}$$
From Eq. (1), we get
$${r_1} = {{{i_1}} \over 2}$$
Hence, option (C) is correct.
According to Snell's law, we have
$${{\sin {i_2}} \over {\sin {r_2}}} = \mu $$
For emergent ray to be tangential to the surface, we have
i2 = 90$$^\circ$$
$$\Rightarrow$$ sin90$$^\circ$$ = $$\mu$$sinr2 $$\Rightarrow$$ $$\mu$$sinr2 = 1
sinr2 = $${1 \over \mu }$$ $$\Rightarrow$$ r2 = sin$$-$$1$$\left( {{1 \over \mu }} \right)$$ ....... (2)
From the relation r1 + r2 = A, we get
r1 = A $$-$$ r2
$$\Rightarrow$$ sinr1 = sin(A $$-$$ r2)
Using sin(a $$-$$ b) = sinacosb $$-$$ sinbcosa, we have
$$\Rightarrow$$ sinr1 = sinAcosr2 $$-$$ sinr2cosA ......... (3)
Using Eq. (2), we have
sinr2 = $${{1 \over \mu }}$$
Squaring it, we get
sin2r2 = $${{1 \over {{\mu ^2}}}}$$
Using the relation sin2x + cos2x = 1, we get
sin2x = 1 $$-$$ cos2x
$$\Rightarrow$$ 1 $$-$$ cos2 r2 = $${{1 \over {{\mu ^2}}}}$$
$$\Rightarrow$$ cos2 r2 = 1 $$-$$ $${{1 \over {{\mu ^2}}}}$$
That is,
cosr2 = $$\sqrt {1 - {1 \over {{\mu ^2}}}} $$
Substituting the values of sinr2 and cosr2 in Eq. (3), we get
sinr1 = sin A$$\sqrt {1 - {1 \over {{\mu ^2}}}} $$ $$-$$ $${{1 \over \mu }}$$cos A
According to Snell's law, we have
$${{\sin {i_1}} \over {\sin {r_1}}} = \mu $$
That is,
$$\sin {i_1} = \mu \sin {r_1} = \mu \left( {\sin A\sqrt {1 - {1 \over {{\mu ^2}}}} - {1 \over \mu }\cos A} \right)$$
$$\sin {i_1} = \mu \left( {\sin A{{\sqrt {{\mu ^2} - 1} } \over \mu } - {{\cos A} \over \mu }} \right)$$
$$\sin {i_1} = \sin A\sqrt {{\mu ^2} - 1} - \cos A$$ ....... (4)
Now, at minimum deviation, we have A = i1 and r1 = $${A \over 2}$$. Thus, from Snell's law, we get
$$\mu = {{\sin {i_1}} \over {\sin {r_1}}} = {{\sin A} \over {\sin (A/2)}}$$
Using $$\sin x = 2\sin {x \over 2}\cos {x \over 2}$$, we get
$$\mu = {{2\sin A/2\cos A/2} \over {\sin A/2}} \Rightarrow \mu = 2\cos {A \over 2}$$ ....... (5)
Now, Eq. (4) becomes
$$\sin {i_1} = \sin A\sqrt {{{\left( {2\cos {A \over 2}} \right)}^2} - 1 - \cos A} $$
$$ = \sin A\sqrt {4{{\cos }^2}{A \over 2} - 1} - \cos A$$
$${i_1} = {\sin ^{ - 1}}\left[ {\sin A\sqrt {4{{\cos }^2}{A \over 2} - 1} - \cos A} \right]$$
Hence, option (D) is correct.
$$\bullet$$ For option (B) : From Eq. (5), we have
$$\mu = 2\cos {A \over 2}$$
$$\cos {A \over 2} = {\mu \over 2}$$
$$ \Rightarrow {A \over 2} = {\cos ^{ - 1}}\left( {{\mu \over 2}} \right)$$
$$ \Rightarrow A = 2{\cos ^{ - 1}}\left( {{\mu \over 2}} \right)$$
Hence, option (B) is incorrect.
Comments (0)
