JEE Advance - Physics (2017 - Paper 1 Offline - No. 1)
Explanation
$$\overrightarrow F $$ = q$$\overrightarrow E $$ + q($$\overrightarrow v $$ $$\times$$ $$\overrightarrow B $$) ....... (1)
For a particle to move in a straight line with constant velocity, $$\overrightarrow F $$ = 0. Therefore, from Eq. (1), we get
$$q\overrightarrow E + q(\overrightarrow V \times \overrightarrow B ) = 0$$
$$ \Rightarrow q\overrightarrow E - q(\overrightarrow v \times \overrightarrow B )$$
$$ \Rightarrow \overrightarrow E = - (\overrightarrow v \times \overrightarrow B )$$
For $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ and $$\overrightarrow B = {B_0}\widehat z$$, we get
$$\overrightarrow v \times \overrightarrow B = \left( {{{{E_0}} \over B}\widehat y} \right) \times ({B_0}\widehat z) = {{{E_0}} \over {{B_0}}} \times {B_0}(\widehat y \times z)$$
Therefore,
$$\overrightarrow v \times \overrightarrow B = {E_0}\widehat x$$ (as y $$\times$$ z = x)
and
$$\overrightarrow E = - {E_0}\widehat x$$
Therefore,
$$v = {{{E_0}} \over {{B_0}}}\widehat y$$; $$\overrightarrow E = - {E_0}\widehat x$$; $$\overrightarrow B = {B_0}\widehat z$$
Hence, option (D) is correct.
Comments (0)
