JEE Advance - Physics (2016 - Paper 1 Offline - No. 4)

The position vector $$\overrightarrow r $$ of a particle of mass m is given by the following equation $$$\overrightarrow r \left( t \right) = \alpha {t^3}\widehat i + \beta {t^2}\widehat j,$$$where $$\alpha = {{10} \over 3}m{s^{ - 3}}$$, $$\beta = 5\,m{s^{ - 2}}$$ and m = 0.1 kg. At t = 1 s, which of the following statement(s) is(are) true about the particle?
The velocity $$\overrightarrow v $$ is given by $$\overrightarrow v = \left( {10\widehat i + 10\widehat j} \right)$$ ms-1
The angular momentum $$\overrightarrow L $$ with respect to the origin is given by $$\overrightarrow L = - \left( {{5 \over 3}} \right)\widehat k\,N\,m\,s$$
The force $$\overrightarrow F $$ is given by $$\overrightarrow F = \left( {\widehat i + 2\widehat j} \right)N$$
The torque $$\overrightarrow \tau $$ with respect to the origin is given by $$\overrightarrow \tau = - \left( {{{20} \over 3}} \right)\widehat k\,N\,m$$

Explanation

$$r = \alpha {t^3}\widehat i + \beta {t^2}\widehat j$$

$$v = {{dr} \over {dt}} = 3\alpha {t^2}\widehat i + 2\beta {t^2}\widehat j$$

$$a = {{{d^2}r} \over {d{t^2}}} = 6\alpha {t^2}\widehat i + 2\beta {t^2}\widehat j$$

At t = 1 s,

(a) $$v = 3 \times {{10} \over 3} \times 1\widehat i + 2 \times 5 \times 1\widehat j$$

$$ = (10\widehat i + 10\widehat j)$$ m/s

(b) $$\widehat L = \widehat r \times \widehat p$$

$$ = \left( {{{10} \over 3} \times 1\widehat i + 5 \times 1\widehat j} \right) \times 0.1(10\widehat i + 10\widehat j)$$

$$ = \left( { - {5 \over 3}\widehat k} \right)$$ N-ms

(c) $$F = ma$$

$$ = m \times \left( {6 \times {{10} \over 3} \times 1\widehat i + 2 \times 5\widehat j} \right) = (2\widehat i + \widehat j)N$$

(d) $$\tau = r \times F = \left( {{{10} \over 3}\widehat i + 5\widehat j} \right) \times (2\widehat i + \widehat j)$$

$$ = + {{10} \over 3}\widehat k + 10( - \widehat k) = \left( { - {{20} \over 3}\widehat k} \right)$$ N-m

Comments (0)

Advertisement