JEE Advance - Physics (2015 - Paper 2 Offline - No. 20)
Consider two different metallic strips (1 and 2) of same dimensions (length l, width w and thickness d) with carrier densities n1 and n2, respectively. Strip 1 is placed in magnetic field B1 and strip 2 is placed in magnetic field B2, both along positive y-directions. Then V1 and V2 are the potential differences developed between K and M in strips 1 and 2, respectively. Assuming that the current I is the same for both the strips, the correct options is/are :
If B1 = B2 and n1 = 2n2, then V2 = 2V1
If B1 = B2 and n1 = 2n2, then V2 = V1
If B1 = 2B2 and n1 = n2, then V2 = 0.5V1
If B1 = 2B2 and n1 = n2, then V2 = V1
Explanation
$$
\text { and } \quad \begin{aligned}
& \mathrm{V}_1 =\frac{i \mathrm{~B}_1}{n_1 e d} \\\\
& \mathrm{~V}_2 =\frac{i \mathrm{~B}_2}{n_2 e d} \\\\
& \frac{\mathrm{V}_1}{\mathrm{~V}_2} =\frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1}
\end{aligned}
$$
For option (A) :
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{1}{2} $$
and $ \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1}=1 \times \frac{1}{2}=\frac{1}{2}$
For option (B) :
$$ \begin{aligned} \frac{\mathrm{V}_1}{\mathrm{~V}_2} & =1 \\\\ \text { and } \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1} & =1 \times \frac{1}{2}=\frac{1}{2} \end{aligned} $$
For option (C) :
$$ \begin{aligned} \frac{\mathrm{V}_1}{\mathrm{~V}_2} & =2 \\\\ \text { and } \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1} & =2 \times 1=2 \end{aligned} $$
For option (D) :
$$ \begin{aligned} \frac{\mathrm{V}_1}{\mathrm{~V}_2} & =1 \\\\ \text { and } \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1} & =2 \times 1=2 \end{aligned} $$
For option (A) :
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{1}{2} $$
and $ \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1}=1 \times \frac{1}{2}=\frac{1}{2}$
For option (B) :
$$ \begin{aligned} \frac{\mathrm{V}_1}{\mathrm{~V}_2} & =1 \\\\ \text { and } \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1} & =1 \times \frac{1}{2}=\frac{1}{2} \end{aligned} $$
For option (C) :
$$ \begin{aligned} \frac{\mathrm{V}_1}{\mathrm{~V}_2} & =2 \\\\ \text { and } \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1} & =2 \times 1=2 \end{aligned} $$
For option (D) :
$$ \begin{aligned} \frac{\mathrm{V}_1}{\mathrm{~V}_2} & =1 \\\\ \text { and } \frac{\mathrm{B}_1}{\mathrm{~B}_2} \frac{n_2}{n_1} & =2 \times 1=2 \end{aligned} $$
Comments (0)
