JEE Advance - Physics (2015 - Paper 2 Offline - No. 19)
Consider two different metallic strips (1 and 2) of the same material. Their lengths are the same, widths are w1 and w2 and thickness are d1 and d2, respectively. Two points K and M are symmetrically located on the opposite faces parallel to the x-y plane (see figure). V1 and V2 are the potential differences between K and M in strips 1 and 2, respectively. Then, for a given current I flowing through them in a given magnetic field strength B, the correct statements is/are
If w1 = w2 and d1 = 2d2, then V2 = 2V1
If w1 = w2 and d1 = 2d2, then V2 = V1
If w1 = 2w2 and d1 = d2, then V2 = 2V1
If w1 = 2w2 and d1 = d2, then V2 = V1
Explanation
At equilibrium,
$$ \begin{aligned} & \mathrm{F}_{\mathrm{M}} =\mathrm{F}_{\mathrm{E}} \\\\ & q \mathrm{v} \mathrm{B} =q \mathrm{E} \\\\ & \mathrm{E} =\mathrm{v} \cdot \mathrm{B} \\\\ & i =n e \mathrm{~A} v_d \end{aligned} $$
where $v_d=$ drift speed of electrons and $n=$ electron density
$$ \begin{aligned} \mathrm{E} & =\frac{i}{n e \mathrm{~A}} \mathrm{~B} \\ & =\frac{i}{n e(\omega d)} \end{aligned} $$
Area of cross section is always taken normal to the direction of flow of current. Potential difference,
$\mathrm{V}=\mathrm{E} \omega=\frac{i \mathrm{~B}} { ned }$
For the two strips
$ \mathrm{V}_1=\frac{i \mathrm{~B}}{n e}\left(\frac{1}{d_1}\right)$
$$\mathrm{V}_2=\frac{i B}{n e}\left(\frac{1}{d_2}\right)$$
For option (A)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{d_2}{d_1}=\frac{1}{2} $$
For option (B)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=1, \frac{d_2}{d_1}=\frac{1}{2} $$
For option (C)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{1}{2}, \frac{d_2}{d_1}=1 $$
For option (D)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{d_2}{d_1}=1 $$
$$ \begin{aligned} & \mathrm{F}_{\mathrm{M}} =\mathrm{F}_{\mathrm{E}} \\\\ & q \mathrm{v} \mathrm{B} =q \mathrm{E} \\\\ & \mathrm{E} =\mathrm{v} \cdot \mathrm{B} \\\\ & i =n e \mathrm{~A} v_d \end{aligned} $$
where $v_d=$ drift speed of electrons and $n=$ electron density
$$ \begin{aligned} \mathrm{E} & =\frac{i}{n e \mathrm{~A}} \mathrm{~B} \\ & =\frac{i}{n e(\omega d)} \end{aligned} $$
Area of cross section is always taken normal to the direction of flow of current. Potential difference,
$\mathrm{V}=\mathrm{E} \omega=\frac{i \mathrm{~B}} { ned }$
For the two strips
$ \mathrm{V}_1=\frac{i \mathrm{~B}}{n e}\left(\frac{1}{d_1}\right)$
$$\mathrm{V}_2=\frac{i B}{n e}\left(\frac{1}{d_2}\right)$$
For option (A)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{d_2}{d_1}=\frac{1}{2} $$
For option (B)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=1, \frac{d_2}{d_1}=\frac{1}{2} $$
For option (C)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{1}{2}, \frac{d_2}{d_1}=1 $$
For option (D)
$$ \frac{\mathrm{V}_1}{\mathrm{~V}_2}=\frac{d_2}{d_1}=1 $$
Comments (0)
