JEE Advance - Physics (2015 - Paper 2 Offline - No. 18)
If two structures of same cross-sectional area, but different numeral apertures NA1 and NA2 (NA2 < NA1) are joined longitudinally, the numerical aperture of the combined structure is
$${{N{A_1}N{A_2}} \over {N{A_1} + N{A_2}}}$$
$$N{A_1} + N{A_2}$$
$$N{A_1}$$
$$N{A_2}$$
Explanation
$$
\sin i_m=n_1 \sin \left(90-\theta_c\right)
$$
$$ \Rightarrow \sin i_m=n_1 \cos \theta_c $$
$$ \begin{aligned} \Rightarrow N A & =n_1 \sqrt{1-\sin ^2 \theta_c} \\\\ & =n_1 \sqrt{1-\frac{n_2^2}{n_1^2}}=\sqrt{n_1^2-n_2^2} \end{aligned} $$
Substituting the values we get,
$$ N A_1=\frac{3}{4} $$
$$ \text { and } N A_2=\frac{\sqrt{15}}{5}=\sqrt{\frac{3}{4}} $$
and $$ N A_2 < N A_1 $$
Therefore, the numerical aperture of combined structure is equal to the lesser of the two numerical aperture, which is $N A_2$.
$$ \Rightarrow \sin i_m=n_1 \cos \theta_c $$
$$ \begin{aligned} \Rightarrow N A & =n_1 \sqrt{1-\sin ^2 \theta_c} \\\\ & =n_1 \sqrt{1-\frac{n_2^2}{n_1^2}}=\sqrt{n_1^2-n_2^2} \end{aligned} $$
Substituting the values we get,
$$ N A_1=\frac{3}{4} $$
$$ \text { and } N A_2=\frac{\sqrt{15}}{5}=\sqrt{\frac{3}{4}} $$
and $$ N A_2 < N A_1 $$
Therefore, the numerical aperture of combined structure is equal to the lesser of the two numerical aperture, which is $N A_2$.
Comments (0)
