JEE Advance - Physics (2015 - Paper 1 Offline - No. 15)

Explanation
The force on a conducting element of length $$d\overrightarrow l $$, carrying a current I in a magnetic field $$\overrightarrow B $$, is given by d$$\overrightarrow F $$ = I d$$\overrightarrow l $$ $$\times$$ $$\overrightarrow B $$. If the field is uniform, the total force on the conductor is given by
$$\overrightarrow F = \int_a^g {Id\overrightarrow l \times \overrightarrow B = I\left( {\int_a^g {d\overrightarrow l } } \right) \times \overrightarrow B = I\,\overrightarrow {ag} \times \overrightarrow B } $$
Note that $$\overrightarrow B $$ is taken out of the integral sign because it is constant. The vector $$\overrightarrow {ag} = 2(L + R)\widehat x$$. The magnetic forces on the conductor in the given cases are
Case (A) : $$\overrightarrow F = I(2(L + R)\widehat x) \times (B\widehat z)$$
$$ = - 2IB(L + R)\widehat y$$
Case (B) : $$\overrightarrow F = I(2(L + R)\widehat x) \times (B\widehat x) = \overrightarrow 0 $$
Case (C) : $$\overrightarrow F = I(2(L + R)\widehat x) \times (B\widehat y)$$
$$ = 2IB(L + R)\widehat z$$
Comments (0)
