JEE Advance - Physics (2015 - Paper 1 Offline - No. 11)

Explanation
Suppose mass and radius of each disc are m and R respectively. Also potential energy at points B and D is zero i.e., they are on reference line.
Given final kinetic energy for each disc is same, say it is K.
Applying energy conservation principle,
For surface AB,
$${1 \over 2}{I_2}\omega _1^2 + mg \times 30 = K$$ ..... (i)
For surface CD,
$${1 \over 2}{I_2}\omega _2^2 + mg \times 27 = K$$ ..... (ii)
From eqns. (i) and (ii), we get
$${1 \over 2}{I_2}\omega _1^2 + mg \times 30 = {1 \over 2}{I_2}\omega _2^2 + mg \times 27$$ ...... (iii)
Here, $${\omega _1} = {{{v_1}} \over R}$$, $${\omega _2} = {{{v_2}} \over R}$$, v1 = 3 m s$$-$$1, v2 = ?
I1 = I2 = Moment of inertia of disc about the point of contact $$ = {1 \over 2}m{R^2} + m{R^2} = {3 \over 2}m{R^2}$$
From eqn. (iii), $${1 \over 2}\left( {{3 \over 2}m{R^2}} \right) \times {\left( {{3 \over R}} \right)^2} + m \times 10 \times 30$$
$$ = {1 \over 2}\left( {{3 \over 2}m{R^2}} \right) \times {\left( {{{{v_2}} \over R}} \right)^2} + m \times 10 \times 27$$
$${{27} \over 4} + 300 = {3 \over 4}v_2^2 + 270$$
$${3 \over 4}v_2^2 = {{27} \over 4} + 30 \Rightarrow 3v_2^2 = 147$$
$$v_2^2 = 49$$ $$\therefore$$ v2 = 7 m s$$-$$1
Comments (0)
