JEE Advance - Physics (2014 - Paper 2 Offline - No. 19)

Four combinations of two thin lenses are given in List I. The radius of curvature of all curved surfaces is r and the refractive index of all the lenses is 1.5. Match lens combinations in List I with their focal length in List II and select the correct answer using the code given below the lists.

JEE Advanced 2014 Paper 2 Offline Physics - Geometrical Optics Question 32 English

P - 1, Q - 2, R - 3, S - 4
P - 2, Q - 4, R - 3, S - 1
P - 4, Q - 1, R - 2, S - 3
P - 2, Q - 1, R - 3, S - 4

Explanation

The lens maker's formula gives focal length of the bi-convex lens as

$${1 \over {{f_1}}} = (\mu - 1)\left[ {{1 \over {{R_1}}} - {1 \over {{R_2}}}} \right]$$

$$ = (1.5 - 1)\left[ {{1 \over r} - {1 \over { - r}}} \right] = {1 \over r}$$ ..... (1)

The focal length of a plano-convex (also convex-plane) lens is given by

$${1 \over {{f_2}}} = (1.5 - 1)\left[ {{1 \over \infty } - {1 \over { - r}}} \right] = {1 \over {2r}}$$ ...... (2)

and that of a plano-concave (also concave-plano) lens is given by

$${1 \over {{f_3}}} = (1.5 - 1)\left[ {{1 \over \infty } - {1 \over r}} \right] = - {1 \over {2r}}$$ ..... (3)

Case P:

Therefore, $${1 \over {{f_{eff}}}} = {1 \over r} + {1 \over r}$$

$${f_{eff}} = {r \over 2}$$

(P) $$\to$$ (2)

Case Q :

$${1 \over {{f_{eff}}}} = {1 \over {2r}} + {1 \over {2r}}$$

$${f_{eff}} = r$$

(Q) $$\to$$ (4)

Case R :

$${1 \over {{f_{eff}}}} = - {1 \over {2r}} - {1 \over {2r}}$$

$${f_{eff}} = - r$$

(R) $$\to$$ (3)

Case S : $${1 \over {{f_{eff}}}} = {1 \over r} - {1 \over {2r}} = {1 \over {2r}}$$

$${f_{eff}} = 2r$$

(S) $$\to$$ (1)

Comments (0)

Advertisement