JEE Advance - Physics (2013 - Paper 2 Offline - No. 17)
The kinetic energy (in keV) of the alpha particle, when the nucleus $$_{84}^{210}Po$$ at rest undergoes alpha decay, is
5319
5422
5707
5818
Explanation
The alpha decay of $$_{84}^{210}Po$$ is given by
$$_{84}^{210}Po \to _{82}^{206}Pb + _2^4He$$
The energy released during this process is
$$Q = ({M_{Po}} - {M_{Pb}} - {M_{He}}){c^2}$$
$$ = (209.982876 - 205.974455 - 4.002603)\,u \times {c^2}$$
$$ = (0.005818\,u){c^2} = (0.005818\,u) \times 932\,MeV$$
$$ = 5.422\,MeV = 5422\,keV$$
Kinetic energy of a particle, $${K_\alpha } = {{(A - 4)Q} \over A}$$
$${K_\alpha } = {{(210 - 4)} \over {210}} \times 5422\,keV = {{206} \over {210}} \times 5422\,keV = 5319\,keV$$
Comments (0)
