JEE Advance - Physics (2013 - Paper 2 Offline - No. 15)
Explanation
$${M \over L} = {Q \over {2m}}$$
$$\therefore$$ $$M = \left( {{Q \over {2m}}} \right)L$$
$$ \Rightarrow M \propto L$$, where $$\gamma = {Q \over {2m}}$$
$$\left( {{Q \over {2m}}} \right)(I\omega )$$
$$ = \left( {{Q \over {2m}}} \right)(m{R^2}\omega ) = {{Q\omega {R^2}} \over 2}$$
Induced electric field is opposite. Therefore,
$$\omega ' = \omega - \alpha t$$
$$\alpha = {\tau \over I} = {{(QE)R} \over {m{R^2}}} = {{(Q)\left( {{{BR} \over 2}} \right)R} \over {m{R^2}}} = {{QB} \over {2m}}$$
$$\therefore$$ $$\omega ' = \omega - {{QB} \over {2m}}.1 = \omega - {{QB} \over {2m}}$$
$${M_f} = {{Q\omega '{R^2}} \over 2} = Q\left( {\omega - {{QB} \over {2m}}} \right){{{R^2}} \over 2}$$
$$\therefore$$ $$\Delta M = {M_f} - {M_i} = - {{{Q^2}B{R^2}} \over {4m}}$$
$$M = - \gamma {{QB{R^2}} \over 2}$$ (as $$\gamma = {Q \over {2m}}$$)
Comments (0)
