JEE Advance - Physics (2012 - Paper 2 Offline - No. 7)
Explanation
Escape velocity, expressed as
$$v_e = \sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}} = \sqrt{\frac{2 \mathrm{G} \cdot \frac{4}{3} \pi \mathrm{R}^3 \rho}{\mathrm{R}}}$$
can be simplified to
$$\sqrt{\frac{8 \pi \mathrm{G} \rho}{3}} \mathrm{R}.$$
The surface area, $A_s$, is given by
$$A_s = 4 \pi R^2.$$
Considering planet Q's surface area is 4 times that of planet P:
$$\mathrm{A}_{\mathrm{Q}} = 4 \mathrm{A} = 4 \pi \mathrm{R}_{\mathrm{Q}}^2$$
$$\mathrm{~A}_{\mathrm{P}} = \mathrm{A} = 4 \pi \mathrm{R}_{\mathrm{P}}^2$$
therefore,
$$4 \mathrm{R}_{\mathrm{P}}^2 = \mathrm{R}_{\mathrm{Q}}^2.$$
Solving for $R_Q$ :
$$\Rightarrow \quad R_{\mathrm{Q}} = 2 \mathrm{R}_{\mathrm{P}} \quad \text{........(i)}.$$
For planet R, with mass $\mathrm{M}_{\mathrm{R}} = \mathrm{M}_{\mathrm{P}} + \mathrm{M}_{\mathrm{Q}}$:
$$\rho \cdot \frac{4}{3} \pi \mathrm{R}_{\mathrm{R}}^3 = \rho \cdot \frac{4}{3} \pi (\mathrm{R}_{\mathrm{P}}^3 + \mathrm{R}_{\mathrm{Q}}^3)$$
Since
$$\mathrm{R}_{\mathrm{Q}} = 2\mathrm{R}_{\mathrm{P}},$$
we have :
$$\mathrm{R}_{\mathrm{R}}^3 = \mathrm{R}_{\mathrm{P}}^3 + 8 \mathrm{R}_{\mathrm{P}}^3 = 9 \mathrm{R}_{\mathrm{P}}^3.$$
Thus,
$$\mathrm{R}_{\mathrm{R}} = (9)^{1/3} \mathrm{R}_{\mathrm{P}} \quad \text{........(ii)}.$$
From (i) and (ii), it follows that :
$$ R_R > R_Q > R_P.$$
Since
$$V_e \propto \mathrm{R},$$
it implies that :
$$\mathrm{V}_{\mathrm{R}} > \mathrm{V}_{\mathrm{Q}} > \mathrm{V}_{\mathrm{P}}.$$
Also,
$$\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{V}_{\mathrm{P}}} = \frac{\mathrm{R}_{\mathrm{R}}}{\mathrm{R}_{\mathrm{P}}} = 9^{1/3},$$
and
$$\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{V}_{\mathrm{Q}}} = \frac{\mathrm{R}_{\mathrm{P}}}{\mathrm{R}_{\mathrm{Q}}} = \frac{1}{2}.$$
Comments (0)
