JEE Advance - Physics (2012 - Paper 2 Offline - No. 15)

The $$\beta$$-decay process, discovered in around 1900, is basically the decay of a neutron (n). In the laboratory, a proton (p) and an electron (e$$-$$) are observed as the decay products of the neutron. Therefore, considering the decay of a neutron as a two-body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant. But experimentally, it was observed that the electron kinetic energy has continuous spectrum. Considering a three-body decay process, that is, n $$\to$$ p + e$$-$$ + $${\overline v _e}$$, around 1930, Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino ($${\overline v _e}$$) to be massless and possessing negligible energy, and the neutron to be at rest, momentum and energy conservation principles are applied. From this calculation, the maximum kinetic energy of the electron is 0.8 $$\times$$ 106 eV. The kinetic energy carried by the proton is only the recoil energy.
The $$\beta$$-decay process, discovered in around 1900, is basically the decay of a neutron (n). In the laboratory, a proton (p) and an electron (e$$-$$) are observed as the decay products of the neutron. Therefore, considering the decay of a neutron as a two-body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant. But experimentally, it was observed that the electron kinetic energy has continuous spectrum. Considering a three-body decay process, that is, n $$\to$$ p + e$$-$$ + $${\overline v _e}$$, around 1930, Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino ($${\overline v _e}$$) to be massless and possessing negligible energy, and the neutron to be at rest, momentum and energy conservation principles are applied. From this calculation, the maximum kinetic energy of the electron is 0.8 $$\times$$ 106 eV. The kinetic energy carried by the proton is only the recoil energy.
The $$\beta$$-decay process, discovered in around 1900, is basically the decay of a neutron (n). In the laboratory, a proton (p) and an electron (e$$-$$) are observed as the decay products of the neutron. Therefore, considering the decay of a neutron as a two-body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant. But experimentally, it was observed that the electron kinetic energy has continuous spectrum. Considering a three-body decay process, that is, n $$\to$$ p + e$$-$$ + $${\overline v _e}$$, around 1930, Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino ($${\overline v _e}$$) to be massless and possessing negligible energy, and the neutron to be at rest, momentum and energy conservation principles are applied. From this calculation, the maximum kinetic energy of the electron is 0.8 $$\times$$ 106 eV. The kinetic energy carried by the proton is only the recoil energy.
What is the maximum energy of the anti-neutrino?
Zero.
Much less than 0.8 $$\times$$ 106 eV.
Nearly 0.8 $$\times$$ 106 eV.
much larger than 0.8 $$\times$$ 106 eV.

Explanation

$${K_p} + {K_{\overline e }} + {K_{\overline v }}$$ = 0.8 $$\times$$ 106 eV

When electron has zero kinetic energy is shared by antineutrino and proton.

Then, $${K_p} + {K_{\overline v }}$$ = 0.8 $$\times$$ 106 eV

As antineutrino is very light mass in comparison to proton so it will have almost contribution in total energy.

$$\therefore$$ Its energy is almost 0.8 $$\times$$ 106 eV

Comments (0)

Advertisement