JEE Advance - Physics (2012 - Paper 2 Offline - No. 12)




Explanation
r = distance of a point from centre.
For r $$\le$$ R/2 Using Ampere's circuital law,
$$\oint {B.\,dl} $$
or, $$Bl = {\mu _0}({I_{in}})$$
$$B(2\pi r) = {\mu _0}({I_{in}})$$
$$B = {{{\mu _0}} \over {2\pi }}{{{I_{in}}} \over r}$$ ...... (i)
Since, $${I_{in}} = 0$$ $$\therefore$$ $$B = 0$$
For $${R \over 2} \le r \le R$$
$${I_{in}} = \left[ {\pi {r^2} - \pi {{\left( {{R \over 2}} \right)}^2}} \right]\sigma $$
Here $$\sigma$$ = current per unit area.
Substituting in Eq. (i), we have
$$B = {{{\mu _0}} \over {2\pi }}{{\left[ {\pi {r^2} - \pi {{{R^2}} \over 2}} \right]\sigma } \over r}$$
$$ = {{{\mu _0}\sigma } \over {2r}}\left( {{r^2} - {{{R^2}} \over 4}} \right)$$
At $$r = {R \over 2},\,B = 0$$
At $$r = R,\,B = {{3{\mu _0}\sigma R} \over 8}$$
For r $$\ge$$ R
$${I_{in}} = {I_{Total}} = I$$ (say)
Therefore, substituting in Eq. (i), we have
$$B = {{{\mu _0}} \over {2\pi }}.\,{I \over r}$$
or, $$B \propto {1 \over r}$$
Comments (0)
