JEE Advance - Physics (2012 - Paper 1 Offline - No. 3)
Two large vertical and parallel metal plates having a separation of $$1$$ $$cm$$ are connected to a $$DC$$ voltage source of potential difference $$X$$. A proton is released at rest midway between the two plates. It is found to move at $${45^ \circ }$$ to the vertical JUST after release. Then $$X$$ is nearly
$$1 \times {10^{ - 5}}\,\,V$$
$$1 \times {10^{ - 7}}\,\,V$$
$$1 \times {10^{ - 9}}\,\,V$$
$$1 \times {10^{ - 10}}\,\,V$$
Explanation

Given that the proton moves at a $45^{\circ}$ angle to the vertical, we can derive the electric field (E) as follows :
$ qE = mg $ or $ E = \frac{mg}{q} $
Since $ E = \frac{X}{d} $, we can substitute to find $ X $ :
$ \frac{X}{d} = \frac{mg}{q} $ or $ X = \frac{mgd}{q} $
Where :
- $ m = 1.67 \times 10^{-27} \, \mathrm{kg} $
- $ g = 10 \, \mathrm{m/s^2} $
- $ d = 1 \, \mathrm{cm} = 1 \times 10^{-2} \, \mathrm{m} $
- $ q = 1.6 \times 10^{-19} \, \mathrm{C} $
Substituting these values, we get :
$ \begin{aligned} X &= \frac{1.67 \times 10^{-27} \times 10 \times 1 \times 10^{-2}}{1.6 \times 10^{-19}} \, \mathrm{V} \\\\ &= \frac{1.67}{1.6} \times 10^{-9} \, \mathrm{V} \\\\ &= 1 \times 10^{-9} \, \mathrm{V} \end{aligned} $
Comments (0)
