JEE Advance - Physics (2011 - Paper 2 Offline - No. 4)
Explanation
Here, $${x_1} = A\sin \omega t$$
$${x_2} = A\sin \left( {\omega t + {{2\pi } \over 3}} \right)$$
$$\therefore$$ $${x_1} + {x_2} = A\sin \omega t + A\sin \left( {\omega t + {{2\pi } \over 3}} \right)$$
$$ = A\sin \omega t + A\left[ {\sin \omega t\cos {{2\pi } \over 3} + \cos \omega t\sin {{2\pi } \over 3}} \right]$$
$$ = A\sin \omega t + A\left[ {\sin \omega t\left( { - {1 \over 2}} \right) + \cos \omega t\left( {{{\sqrt 3 } \over 2}} \right)} \right]$$
$$ = {A \over 2}\sin \omega t + {{\sqrt 3 } \over 2}A\cos \omega t = A\left[ {\sin \omega t\cos {\pi \over 3} + \cos \omega t\sin {\pi \over 3}} \right]$$
$$ = A\sin \left( {\omega t + {\pi \over 3}} \right)$$
$$\because$$ $${x_1} + {x_2} + {x_3} = 0$$
$$ \Rightarrow {x_3} = - ({x_1} + {x_2}) = - A\sin \left( {\omega t + {\pi \over 3}} \right)$$
$$ = A\sin \left( {\omega t + \pi + {\pi \over 3}} \right)$$
$${x_3} = A\sin \left( {\omega t + {{4\pi } \over 3}} \right)$$
$$\because$$ $${x_3} = B\sin (\omega t + \phi )$$

Hence, $$B = A,\,\phi = {{4\pi } \over 3}$$
Comments (0)
