JEE Advance - Physics (2011 - Paper 1 Offline - No. 12)
The wavelength of the first spectral line in the Balmer series of hydrogen atom is 6561 $$\mathop A\limits^o $$. The wavelength of the second spectral line in the Balmer series of singly-ionized helium atom is
1215 $$\mathop A\limits^o $$
1640 $$\mathop A\limits^o $$
2430 $$\mathop A\limits^o $$
4687 $$\mathop A\limits^o $$
Explanation
$${1 \over \lambda } = {R_H}{Z^2}\left[ {{1 \over {n_1^2}} - {1 \over {n_2^2}}} \right]$$
For singly-ionized helium atom, Z = 2. For hydrogen atom Z = 1.
For Balmer series n1 = 2.
For first spectral line of hydrogen :
$${1 \over {6561}} = {R_H} \times {(1)^2}\left[ {{1 \over {{2^2}}} - {1 \over {{3^2}}}} \right] = {{5R} \over {36}}$$
$$ \Rightarrow {R_H} = {{36} \over {5 \times 6561}}$$
For second spectral line of helium,
$${1 \over \lambda } = {R_H} \times {(2)^2}\left[ {{1 \over {{2^2}}} - {1 \over {{4^2}}}} \right] = {{3{R_H}} \over 4}$$
$$ = {3 \over 4} \times {{36} \over {5 \times 6561}}$$
$$ \Rightarrow \lambda = 1215\,\mathop A\limits^o $$
Comments (0)
