JEE Advance - Physics (2009 - Paper 2 Offline - No. 8)

A sphere is rolling without slipping on a fixed horizontal plane surface. In the figure below, A is the point of contact, B is the centre of the sphere and C is its topmost point. Then,

IIT-JEE 2009 Paper 2 Offline Physics - Rotational Motion Question 16 English

$${\overrightarrow V _C} - {\overrightarrow V _A} = 2({\overrightarrow V _B} - {\overrightarrow V _C})$$
$${\overrightarrow V _C} - {\overrightarrow V _B} = {\overrightarrow V _B} - {\overrightarrow V _A}$$
$$|{\overrightarrow V _C} - {\overrightarrow V _A}| = 2|{\overrightarrow V _B} - {\overrightarrow V _C}|$$
$$|{\overrightarrow V _C} - {\overrightarrow V _A}| = 4|{\overrightarrow V _B}|$$

Explanation

We have

$$\overrightarrow {{V_C}} = \overrightarrow {{V_{CM}}} + \overrightarrow {r\omega } = 2\overrightarrow {{V_{CM}}} $$

$$\overrightarrow {{V_B}} = \overrightarrow {{V_{CM}}} $$

$$\overrightarrow {{V_A}} = 0$$

Therefore,

$$\overrightarrow {{V_C}} - \overrightarrow {{V_B}} = \overrightarrow {r\omega } = \overrightarrow {{V_{CM}}} $$

$$\overrightarrow {{V_B}} - \overrightarrow {{V_A}} = \overrightarrow {{V_{CM}}} $$

$$\overrightarrow {{V_C}} - \overrightarrow {{V_A}} = \overrightarrow {{V_{CM}}} + \overrightarrow {r\omega } = 2\overrightarrow {{V_{CM}}} $$

$$\overrightarrow {{V_B}} - \overrightarrow {{V_C}} = - \overrightarrow {r\omega } $$

For pure rolling, we have

$$|\overrightarrow {{V_{CM}}} | = |\overrightarrow {r\omega } |$$

Therefore,

$$|\overrightarrow {{V_C}} - \overrightarrow {{V_A}} | = 2{V_{CM}}$$

$$ \Rightarrow 2|\overrightarrow {{V_B}} - \overrightarrow {{V_C}} | = 2r\omega = 2{V_{CM}}$$

Comments (0)

Advertisement