JEE Advance - Physics (2009 - Paper 1 Offline - No. 18)
Explanation
To determine the most promising design based on the Lawson criterion, we need to calculate the Lawson number ($$nt_0$$) for each design and check if it exceeds $$5 \times 10^{14}$$ s/cm$$^3$$. We will do this for each of the given options:
Option A:
Deuteron density, $$n = 2.0 \times 10^{12}~\mathrm{cm^{-3}}$$
Confinement time, $$t_0 = 5.0 \times 10^{-3}~\mathrm{s}$$
Lawson number, $$nt_0 = n \cdot t_0 = (2.0 \times 10^{12}) \cdot (5.0 \times 10^{-3}) = 1.0 \times 10^{10}~\mathrm{s/cm^3}$$
Option B:
Deuteron density, $$n = 8.0 \times 10^{14}~\mathrm{cm^{-3}}$$
Confinement time, $$t_0 = 9.0 \times 10^{-1}~\mathrm{s}$$
Lawson number, $$nt_0 = n \cdot t_0 = (8.0 \times 10^{14}) \cdot (9.0 \times 10^{-1}) = 7.2 \times 10^{14}~\mathrm{s/cm^3}$$
Option C:
Deuteron density, $$n = 4.0 \times 10^{23}~\mathrm{cm^{-3}}$$
Confinement time, $$t_0 = 1.0 \times 10^{-11}~\mathrm{s}$$
Lawson number, $$nt_0 = n \cdot t_0 = (4.0 \times 10^{23}) \cdot (1.0 \times 10^{-11}) = 4.0 \times 10^{12}~\mathrm{s/cm^3}$$
Option D:
Deuteron density, $$n = 1.0 \times 10^{24}~\mathrm{cm^{-3}}$$
Confinement time, $$t_0 = 4.0 \times 10^{-12}~\mathrm{s}$$
Lawson number, $$nt_0 = n \cdot t_0 = (1.0 \times 10^{24}) \cdot (4.0 \times 10^{-12}) = 4.0 \times 10^{12}~\mathrm{s/cm^3}$$
Based on the calculations, the Lawson numbers for each option are:
- Option A: $$1.0 \times 10^{10}~\mathrm{s/cm^3}$$
- Option B: $$7.2 \times 10^{14}~\mathrm{s/cm^3}$$
- Option C: $$4.0 \times 10^{12}~\mathrm{s/cm^3}$$
- Option D: $$4.0 \times 10^{12}~\mathrm{s/cm^3}$$
The most promising design based on the Lawson criterion, which requires the Lawson number to be greater than $$5 \times 10^{14}~\mathrm{s/cm^3}$$, is Option B because its Lawson number exceeds the threshold.
Comments (0)
