JEE Advance - Physics (2009 - Paper 1 Offline - No. 17)
Explanation
To determine the minimum temperature required for two deuteron nuclei to reach a separation of $$4 \times 10^{-15}$$ m, we need to equate the initial kinetic energy of the deuterons with the potential energy at the specified separation distance.
The initial kinetic energy of each deuteron is given as :
$$ KE = 1.5 \, k \, T $$
Since there are two deuterons, the total kinetic energy is :
$$ KE_{\text{total}} = 2 \times 1.5 \, k \, T = 3 \, k \, T $$
The Coulomb potential energy (PE) between two deuterons at a separation distance $$r = 4 \times 10^{-15}$$ m is given by :
$$ PE = \frac{e^2}{4 \pi \epsilon_0 r} $$
Using the given value:
$$ \frac{e^2}{4 \pi \epsilon_0} = 1.44 \times 10^9 \, \text{eV} \cdot \text{m} $$
So, the potential energy becomes :
$$ PE = \frac{1.44 \times 10^9 \, \text{eV} \cdot \text{m}}{4 \times 10^{-15} \, \text{m}} $$
Simplifying :
$$ PE = \frac{1.44 \times 10^9}{4 \times 10^{-15}} \, \text{eV} $$
$$ PE = 0.36 \times 10^{24} \, \text{eV} $$
Now, we equate the total kinetic energy to the potential energy to find the temperature $ T $ :
$$ 3 \, k \, T = 0.36 \times 10^{24} \, \text{eV} $$
Solving for $ T $ :
$$ T = \frac{0.36 \times 10^{24}}{3 \times 8.6 \times 10^{-5}} \, \text{K} $$
$$ T = \frac{0.36 \times 10^{24}}{2.58 \times 10^{-4}} \, \text{K} $$
$$ T = 1.395 \times 10^{9} \, \text{K} $$
This temperature is in the range :
Option A: $$1.0 \times {10^9}K < T < 2.0 < {10^9}K$$
So, the correct answer is :
Option A : $$1.0 \times {10^9}K < T < 2.0 < {10^9}K$$
Comments (0)
