JEE Advance - Physics (2009 - Paper 1 Offline - No. 16)

Scientists are working hard to develop nuclear fusion reactor. Nuclei of heavy hydrogen, $$_1^2$$H, known as deuteron and denoted by D, can be thought of as a candidate for fusion reactor. The D-D reaction is $$_1^2$$H + $$_1^2$$H $$\to$$ $$_2^3$$He + $$n$$ + energy. In the core of fusion reactor, a gas of heavy hydrogen is fully ionized into deuteron nuclei and electrons. This collection of $$_1^2$$H nuclei and electrons is known as plasma. The nuclei move randomly in the reactor core and occasionally come close enough for nuclear fusion to take place. Usually, the temperatures in the reactor core are too high and no material wall can be used to confine the plasma. Special techniques are used which confine the plasma for a time $$t_0$$ before the particles fly away from the core. If $$n$$ is the density (number/volume) of deuterons, the product $$nt_0$$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater than 5 $$\times$$ 10$$^{14}$$ s/cm$$^3$$.

It may be helpful to use the following : Boltzmann constant $$k = 8.6 \times {10^{ - 5}}$$ eV/K; $${{{e^2}} \over {4\pi {\varepsilon _0}}} = 1.44 \times {10^9}$$ eVm.

Scientists are working hard to develop nuclear fusion reactor. Nuclei of heavy hydrogen, $$_1^2$$H, known as deuteron and denoted by D, can be thought of as a candidate for fusion reactor. The D-D reaction is $$_1^2$$H + $$_1^2$$H $$\to$$ $$_2^3$$He + $$n$$ + energy. In the core of fusion reactor, a gas of heavy hydrogen is fully ionized into deuteron nuclei and electrons. This collection of $$_1^2$$H nuclei and electrons is known as plasma. The nuclei move randomly in the reactor core and occasionally come close enough for nuclear fusion to take place. Usually, the temperatures in the reactor core are too high and no material wall can be used to confine the plasma. Special techniques are used which confine the plasma for a time $$t_0$$ before the particles fly away from the core. If $$n$$ is the density (number/volume) of deuterons, the product $$nt_0$$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater than 5 $$\times$$ 10$$^{14}$$ s/cm$$^3$$.

It may be helpful to use the following : Boltzmann constant $$k = 8.6 \times {10^{ - 5}}$$ eV/K; $${{{e^2}} \over {4\pi {\varepsilon _0}}} = 1.44 \times {10^9}$$ eVm.

Scientists are working hard to develop nuclear fusion reactor. Nuclei of heavy hydrogen, $$_1^2$$H, known as deuteron and denoted by D, can be thought of as a candidate for fusion reactor. The D-D reaction is $$_1^2$$H + $$_1^2$$H $$\to$$ $$_2^3$$He + $$n$$ + energy. In the core of fusion reactor, a gas of heavy hydrogen is fully ionized into deuteron nuclei and electrons. This collection of $$_1^2$$H nuclei and electrons is known as plasma. The nuclei move randomly in the reactor core and occasionally come close enough for nuclear fusion to take place. Usually, the temperatures in the reactor core are too high and no material wall can be used to confine the plasma. Special techniques are used which confine the plasma for a time $$t_0$$ before the particles fly away from the core. If $$n$$ is the density (number/volume) of deuterons, the product $$nt_0$$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater than 5 $$\times$$ 10$$^{14}$$ s/cm$$^3$$.

It may be helpful to use the following : Boltzmann constant $$k = 8.6 \times {10^{ - 5}}$$ eV/K; $${{{e^2}} \over {4\pi {\varepsilon _0}}} = 1.44 \times {10^9}$$ eVm.

In the core of nuclear fusion reactor, the gas becomes plasma because of
strong nuclear force acting between the deuterons.
Coulomb force acting between the deuterons.
Coulomb force acting between deuteron-electrons pairs.
the high temperature maintained inside the reactor core.

Explanation

In a nuclear fusion reactor, the gas becomes plasma primarily because of the high temperature maintained inside the reactor core. At such high temperatures, typically in the range of millions of degrees Kelvin, the thermal energy is sufficient to ionize the atoms, meaning electrons are stripped from the nuclei, resulting in a collection of positively charged deuteron nuclei and negatively charged electrons. This ionized state of matter is known as plasma.

The strong nuclear force and Coulomb force (between deuterons and between deuteron-electron pairs) play roles in the fusion process and the behavior of particles. However, the ionization into plasma is primarily due to the extremely high temperatures.

Therefore, the correct option is:

Option D: the high temperature maintained inside the reactor core.

Comments (0)

Advertisement