JEE Advance - Physics (2008 - Paper 2 Offline - No. 15)
For a = 0, the value of d (maximum value of $$\rho$$ as shown in the figure) is
$${{3Ze} \over {4\pi {R^3}}}$$
$${{3Ze} \over {\pi {R^3}}}$$
$${{4Ze} \over {3\pi {R^3}}}$$
$${{Ze} \over {3\pi {R^3}}}$$
Explanation
For a = 0, the graph is as shown, the equation for the graph line is
The charge in the dotted element shown in figure is
$$dq = \sigma \times 4\pi {r^2}dr$$
$$\therefore$$ $$dq = \left( {d - {d \over R}r} \right)4\pi {r^2}dr$$
$$ \Rightarrow Ze = \int_0^R {4\pi d{r^2}dr - \int_0^R {{{4\pi d} \over R}{r^3}dr} } $$
$$Ze = 4\pi d{{{R^3}} \over 3} - {{4\pi d} \over R}{{{R^4}} \over 4}$$
$$\therefore$$ $${{Ze} \over {4\pi d{R^3}}} = {1 \over 3} - {1 \over 4} = {1 \over {12}}$$
$$\therefore$$ $$d = {{3Ze} \over {\pi {R^3}}}$$
Comments (0)
