JEE Advance - Physics (2008 - Paper 2 Offline - No. 10)

A light beam is travelling from Region I to Region IV (Refer figure). The refractive index in Regions I, II, III and IV are $${n_0},{{{n_0}} \over 2},{{{n_0}} \over 6}$$ and $${{{n_0}} \over 8}$$, respectively. The angle of incidence $$\theta$$ for which the beam just misses entering Region IV is

IIT-JEE 2008 Paper 2 Offline Physics - Geometrical Optics Question 10 English

$${\sin ^{ - 1}}\left( {{3 \over 4}} \right)$$
$${\sin ^{ - 1}}\left( {{1 \over 8}} \right)$$
$${\sin ^{ - 1}}\left( {{1 \over 4}} \right)$$
$${\sin ^{ - 1}}\left( {{1 \over 3}} \right)$$

Explanation

IIT-JEE 2008 Paper 2 Offline Physics - Geometrical Optics Question 10 English Explanation

From Snell's laws

$${\mu _1}\sin \theta = {\mu _2}\sin {\theta _2}$$

Case I : Region I

$${n_0}\sin \theta = {{{n_0}} \over 2}\sin \alpha $$ ...... (i)

Case II : Region II

$${{{n_0}} \over 2}\sin \alpha = {{{n_0}} \over 6}\sin {\theta _c}$$ ..... (ii) ($$\therefore$$ $$\beta = {\theta _c}$$)

Case II : Region III

$${{{n_0}} \over 6}\sin {\theta _c} = {{{n_0}} \over 8}\sin 90^\circ $$

$$ \Rightarrow {{{n_0}} \over 6}\sin {\theta _c} = {{{n_0}} \over 8}$$ ..... (iii)

From equation (i), (ii) and (iii), we have,

$${n_0}\sin \theta = {{{n_0}} \over 8}$$

$$ \Rightarrow \sin \theta = {1 \over 8}$$

$$ \Rightarrow \theta = {\sin ^{ - 1}}\left( {{1 \over 8}} \right)$$

Comments (0)

Advertisement