JEE Advance - Physics (2008 - Paper 1 Offline - No. 1)

Student I, II and III perform an experiment for measuring the acceleration due to gravity (g) using a simple pendulum. They use different length of the pendulum and/or record time for different number of oscillations. The observations area shown in the table.

Least count for length = 0.1 cm

Least count for time = 0.1 s

Student Length of the
pendulum
(cm)
No. of
oscillations
(n)
Total time
for(n)
oscillations
(s)
Time
periods
(s)
I 64.0 8 128.0 16.0
II 64.0 4 64.0 16.0
III 20.0 4 36.0 9.0

If EI, EII and EIII are the percentage errors in g, i.e., $$\left(\frac{\triangle g}g\times100\right)$$ for students I, II and III, respectively,then

EI = 0
EI is minimum
EI = EII
EII is maximum

Explanation

Time period (T) $$ = 2\pi \sqrt {{l \over g}} $$

or $${t \over n} = 2\pi \sqrt {{l \over g}} $$

$$\therefore$$ $$g = {{(4{\pi ^2})({n^2})l} \over {{t^2}}}$$

% error in $$g = {{\Delta g} \over g} \times 100$$

$$ = \left( {{{\Delta l} \over l} \times {{2\Delta l} \over l}} \right) \times 100$$

$${E_I} = \left( {{{0.1} \over {64}} + {{2 \times 0.1} \over {128}}} \right) \times 100 = 0.3125\% $$

$${E_{II}} = \left( {{{0.1} \over {64}} + {{2 \times 0.1} \over {64}}} \right) \times 100 = 0.46875\% $$

$${E_{III}} = \left( {{{0.1} \over {20}} + {{2 \times 0.1} \over {36}}} \right) \times 100 = 1.055\% $$

Hence, $$\mathrm{E_I}$$ is minimum.

Comments (0)

Advertisement