JEE Advance - Physics (2007 - Paper 2 Offline - No. 1)

A student performs an experiment to determine the Young's modulus of a wire, exactly 2 m long, by Searle's method. In a particular reading, the student measures the extension in the length of the wire to be 0.8 mm with an uncertainty of $$\pm0.05\;\mathrm{mm}$$ at a load of exactly 1.0 kg. The student also measures the diameter of the wire to be 0.4 mm with an uncertainty of $$\pm0.01\;\mathrm{mm}$$. Take g = 9.8 m/s2 (exact). The Young's modulus obtained from the reading is
$$\left(2.0\;\pm\;0.3\right)\times10^{11}\;\mathrm N/\mathrm m^2$$
$$\left(2.0\;\pm\;0.2\right)\times10^{11}\;\mathrm N/\mathrm m^2$$
$$\left(2.0\;\pm\;0.1\right)\times10^{11}\;\mathrm N/\mathrm m^2$$
$$\left(2.0\;\pm\;0.05\right)\times10^{11}\;\mathrm N/\mathrm m^2$$

Explanation

Young's modulus $$(Y)=\frac{\text { Stress }}{\text { Strain }}=\frac{4 m g l}{\pi d^{2} \Delta l}$$

$$\begin{gathered} \mathrm{Y}=\frac{4 m g l}{\pi d^{2} l} \\\\ =\frac{4 \times 1 \times 9.8 \times 2}{3.14 \times(0.4)^{2} \times(0.8) \times 10^{-6} \times 10^{-3}} \\\\ =2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \end{gathered} $$

Where, $$\quad$$ Mass $$(m)=1 \mathrm{~kg}$$

$$\begin{aligned}g & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\\\ \text { Length of wire } & =2 \mathrm{~m} \\\\ \pi & =3.14 \\\\ \text { Diameter }(d) & =0.4 \mathrm{~mm} \times 10^{-3} \mathrm{~m} \end{aligned}$$

Extension in the length of wire

$$\begin{aligned}(\Delta l) & =0.8 \mathrm{~mm} \\\\ & =0.8 \times 10^{-3} \mathrm{~m} \\\\ \frac{\Delta y}{y} & =\frac{2 \Delta d}{d}+\frac{\Delta l}{l} \\\\ & =\frac{2 \times(0.01)}{0.4}+\frac{(0.05)}{0.8} \\\\ & =0.1125\end{aligned}$$

$$\begin{aligned}\Rightarrow \Delta \mathrm{Y} & =(\mathrm{Y}) \times 0.1125 \\\\ & =2 \times 10^{11} \times 0.1125 \\\\ & =0.225 \times 10^{11} \\\\ & \simeq 0.2 \times 10^{11} \\\\ \text { (b) }\left(2 \pm 0.2 \times 10^{11} \mathrm{~N/}\right. & \left.\mathrm{m}^{2}\right) \end{aligned}$$

Comments (0)

Advertisement