JEE Advance - Physics Hindi (2022 - Paper 2 Online - No. 18)

निम्नलिखित में से कौनसा विकल्प $x y$ तल पर स्थित दिये गये तार खण्ड में प्रवाहित धारा के कारण $O$ पर चुंबकीय क्षेत्र $\vec{B}$ को प्रदर्शित करता है?

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi

$\vec{B}=\frac{-\mu_{o} I}{L}\left(\frac{3}{2}+\frac{1}{4 \sqrt{2} \pi}\right) \hat{k}$
$\vec{B}=-\frac{\mu_{o} I}{L}\left(\frac{3}{2}+\frac{1}{2 \sqrt{2} \pi}\right) \hat{k}$
$\vec{B}=\frac{-\mu_{o} I}{L}\left(1+\frac{1}{4 \sqrt{2} \pi}\right) \hat{k}$
$\vec{B}=\frac{-\mu_{o} I}{L}\left(1+\frac{1}{4 \pi}\right) \hat{k}$

Explanation

$B_{\text {net }}=B_{\text {semicircle }}+B_{\text {quarter }}+B_{\text {straight }}$

$=\frac{\mu_0 I}{4\left(\frac{L}{2}\right)}(-\hat{k})+\frac{\mu_0 I}{8 \times\left(\frac{L}{4}\right)}(-\hat{k})+\frac{\mu_0 I}{4 \pi \times L}\left(\frac{1}{\sqrt{2}}\right)(-\hat{k})$

$=\left(\frac{\mu_0 I}{2 L}+\frac{\mu_0 I}{2 L}+\frac{\mu_0 I}{4 \sqrt{2} \pi L}\right)(-\hat{k})$

$=\frac{\mu_0 I}{L}\left(1+\frac{1}{4 \sqrt{2} \pi}\right)(-\hat{k})$

Things you should know to solve this problem :

(1) Magnetic Field Due to Straight Current Carrying Wire :

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 1

$$B = {{{\mu _0}i} \over {4\pi r}}\left( {\sin \alpha + \sin \beta } \right)$$

Direction of B :

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 2

Note :-

On the axis of the wire magnetic field = 0.

Case 1 :

Infinite long wire (Very Long wire) :

$$\alpha ,\beta \to 90^\circ $$

$$\therefore$$ $$B = {{{\mu _0}i} \over {4\pi r}}(\sin 90^\circ + \sin 90^\circ )$$

$$ = {{{\mu _0}i} \over {4\pi r}}(1 + 1)$$

$$ = {{{\mu _0}i} \over {2\pi r}}$$

Graph :

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 3

Case 2 :

One end is at infinite and other end is in front.

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 4

Here $$\alpha=90^\circ$$ and $$\beta=0^\circ$$

$$B = {{{\mu _0}i} \over {4\pi r}}(\sin 90^\circ + \sin 0^\circ )$$

$$ = {{{\mu _0}i} \over {4\pi r}}$$

Case 3 :

When drawn perpendicular from P don't lie on the wire

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 5

Here, magnetic field at point P is,

$$B = {{{\mu _0}i} \over {4\pi r}}(\sin\alpha-\sin\beta)$$

(2) Magnetic Field Due to Half Loop or Semicircle :

Half loop means $${1 \over 2}$$ turn. So, N = $${1 \over 2}$$.

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 6

Magnetic field at centre O,

$$\therefore$$ B at centre $$ = {{{\mu _0} \times {1 \over 2} \times i} \over {2R}} = {{{\mu _0}i} \over {4R}}$$

Here,

Here, $$N=\frac{1}{2}$$

i = Amount of current flowing through loop

R = Radius of half loop

Direction of B found by right hand thumb rule. Curl your right hand's finger in the direction of current then thumb gives direction of magnetic field on axis as well as entire plane.

(3) Magnetic Field Due to Quarter Loop :

Quarter loop means $${1 \over 4}$$ turn. So, N = $${1 \over 4 }$$.

JEE Advanced 2022 Paper 2 Online Physics - Magnetism Question 10 Hindi Explanation 7

Magnetic field at O,

$$\therefore$$ B at centre $$ = {{{\mu _0} \times {1 \over 4} \times i} \over {2R}} = {{{\mu _0}i} \over {8R}}$$

Here,

Here, $$N=\frac{1}{4}$$

i = Amount of current flowing through loop

R = Radius of quarter loop

Direction of B found by right hand thumb rule. Curl your right hand's finger in the direction of current then thumb gives direction of magnetic field on axis as well as entire plane.

Comments (0)

Advertisement