JEE Advance - Physics Hindi (2022 - Paper 1 Online - No. 1)

दो गोलीय तारों $A$ तथा $B$ के घनत्व क्रमश: $\rho_A$ तथा $\rho_B$ है। $A$ तथा $B$ की त्रिज्या समान है तथा इनके द्रव्यमान $M_A$ तथा $M_B$, $M_B=2 M_A$ से सम्बन्धित है। अन्योन्य क्रिया प्रक्रिया के कारण, तारें $A$ के कुछ द्रव्यमान की हानि होती है, ताकि इसकी त्रिज्या आधी हो जाती है, जबकि इसकी गोलाकार आकृति बनी रहती है तथा इसका घनत्व $\rho_A$ रहता है। $A$ द्वारा सम्पूर्ण द्रव्यमान हानि $B$ पर एक मोटे गोलाकार कोश के रूप में जमा हो जाती है जबकि कोश का घनत्व $\rho_A$ है। यदि $v_A$ तथा $v_B$ अन्योन्य क्रिया प्रक्रिया के बाद $A$ तथा $B$ से पलायन वेग है, तब अनुपात $\frac{v_B}{v_A}=\sqrt{\frac{10 n}{15^{1 / 3}}}$ है। $n$ का मान _________ है |
Answer
2.2TO2.4

Explanation

JEE Advanced 2022 Paper 1 Online Physics - Gravitation Question 6 Hindi Explanation 1

Due to an interaction process, star A losses some of it's mass and radius becomes $${R \over 2}$$. Let new mass of star A is M'A. Here in both cases density of star A remains same $${\rho _A}$$.

$$\therefore$$ Initially $$({\rho _A}) = {{{M_A}} \over {{4 \over 3}\pi {R^3}}}$$

Finally $$({\rho _A}) = {{M{'_A}} \over {{4 \over 3}\pi {{\left( {{R \over 2}} \right)}^3}}}$$

Density remains same,

$$\therefore$$ $${{{M_A}} \over {{4 \over 3}\pi {R^3}}} = {{M{'_A}} \over {{4 \over 3}\pi {{\left( {{R \over 2}} \right)}^3}}}$$

$$ \Rightarrow 8M{'_A} = {M_A}$$

$$ \Rightarrow M{'_A} = {{{M_A}} \over 8}$$

$$\therefore$$ Lost mass by $$A = {M_A} - M{'_A} = {M_A} - {{{M_A}} \over 8} = {{7{M_A}} \over 8}$$

This lost mass $${{7{M_A}} \over 8}$$ is attached on the star B and density of the attached mass stay $${\rho _A}$$. So new radius of star B is $${R_2}$$.

JEE Advanced 2022 Paper 1 Online Physics - Gravitation Question 6 Hindi Explanation 2

Density of the removed part from star A is,

$${\rho _A} = {{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {{R^3} - {{\left( {{R \over 2}} \right)}^3}} \right)}}$$

Density of the added part in star B stay's same as $${\rho _A}$$,

$$\therefore$$ $${\rho _A} = {{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {R_2^3 - {R^3}} \right)}}$$

$$\therefore$$ $${{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {{R^3} - {{\left( {{R \over 2}} \right)}^3}} \right)}} = {{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {R_2^3 - {R^3}} \right)}}$$

$$ \Rightarrow {R^3} - {{{R^3}} \over 8} = R_2^3 - {R^3}$$

$$ \Rightarrow R_2^3 = 2{R^3} - {{{R^3}} \over 8}$$

$$ \Rightarrow R_2^3 = {{15{R^3}} \over 8}$$

$$ \Rightarrow {R_2} = {(15)^{{1 \over 3}}} \times {R \over 2}$$

Escape velocity from star A after interaction process,

$${V_A} = \sqrt {{{2G\left( {{{{M_A}} \over 8}} \right)} \over {{R \over 2}}}} $$

And escape velocity from star B after interaction process,

$${V_B} = \sqrt {{{2G\left( {{{23{M_A}} \over 8}} \right)} \over {{{(15)}^{{1 \over 3}}} \times {R \over 2}}}} $$

$$\therefore$$ $${{{V_B}} \over {{V_A}}} = \sqrt {{{{{23{M_A}} \over 8}} \over {{{(15)}^{{1 \over 3}}} \times {R \over 2}}} \times {{{R \over 2}} \over {{{{M_A}} \over 8}}}} $$

$$ = \sqrt {{{23} \over {{{(15)}^{{1 \over 3}}}}}} $$ ..... (1)

Given,

$${{{V_B}} \over {{V_A}}} = \sqrt {{{10n} \over {{{(15)}^{{1 \over 3}}}}}} $$ ..... (2)

Comparing equation (1) and (2), we get,

$$10n = 23$$

$$ \Rightarrow n = 2.3$$

Comments (0)

Advertisement