JEE Advance - Physics Hindi (2022 - Paper 1 Online - No. 1)
Explanation
Due to an interaction process, star A losses some of it's mass and radius becomes $${R \over 2}$$. Let new mass of star A is M'A. Here in both cases density of star A remains same $${\rho _A}$$.
$$\therefore$$ Initially $$({\rho _A}) = {{{M_A}} \over {{4 \over 3}\pi {R^3}}}$$
Finally $$({\rho _A}) = {{M{'_A}} \over {{4 \over 3}\pi {{\left( {{R \over 2}} \right)}^3}}}$$
Density remains same,
$$\therefore$$ $${{{M_A}} \over {{4 \over 3}\pi {R^3}}} = {{M{'_A}} \over {{4 \over 3}\pi {{\left( {{R \over 2}} \right)}^3}}}$$
$$ \Rightarrow 8M{'_A} = {M_A}$$
$$ \Rightarrow M{'_A} = {{{M_A}} \over 8}$$
$$\therefore$$ Lost mass by $$A = {M_A} - M{'_A} = {M_A} - {{{M_A}} \over 8} = {{7{M_A}} \over 8}$$
This lost mass $${{7{M_A}} \over 8}$$ is attached on the star B and density of the attached mass stay $${\rho _A}$$. So new radius of star B is $${R_2}$$.
Density of the removed part from star A is,
$${\rho _A} = {{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {{R^3} - {{\left( {{R \over 2}} \right)}^3}} \right)}}$$
Density of the added part in star B stay's same as $${\rho _A}$$,
$$\therefore$$ $${\rho _A} = {{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {R_2^3 - {R^3}} \right)}}$$
$$\therefore$$ $${{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {{R^3} - {{\left( {{R \over 2}} \right)}^3}} \right)}} = {{{{7{M_A}} \over 8}} \over {{4 \over 3}\pi \left( {R_2^3 - {R^3}} \right)}}$$
$$ \Rightarrow {R^3} - {{{R^3}} \over 8} = R_2^3 - {R^3}$$
$$ \Rightarrow R_2^3 = 2{R^3} - {{{R^3}} \over 8}$$
$$ \Rightarrow R_2^3 = {{15{R^3}} \over 8}$$
$$ \Rightarrow {R_2} = {(15)^{{1 \over 3}}} \times {R \over 2}$$
Escape velocity from star A after interaction process,
$${V_A} = \sqrt {{{2G\left( {{{{M_A}} \over 8}} \right)} \over {{R \over 2}}}} $$
And escape velocity from star B after interaction process,
$${V_B} = \sqrt {{{2G\left( {{{23{M_A}} \over 8}} \right)} \over {{{(15)}^{{1 \over 3}}} \times {R \over 2}}}} $$
$$\therefore$$ $${{{V_B}} \over {{V_A}}} = \sqrt {{{{{23{M_A}} \over 8}} \over {{{(15)}^{{1 \over 3}}} \times {R \over 2}}} \times {{{R \over 2}} \over {{{{M_A}} \over 8}}}} $$
$$ = \sqrt {{{23} \over {{{(15)}^{{1 \over 3}}}}}} $$ ..... (1)
Given,
$${{{V_B}} \over {{V_A}}} = \sqrt {{{10n} \over {{{(15)}^{{1 \over 3}}}}}} $$ ..... (2)
Comparing equation (1) and (2), we get,
$$10n = 23$$
$$ \Rightarrow n = 2.3$$
Comments (0)
