JEE Advance - Mathematics (2025 - Paper 2 Online - No. 6)

Let $S$ denote the locus of the mid-points of those chords of the parabola $y^2=x$, such that the area of the region enclosed between the parabola and the chord is $\frac{4}{3}$. Let $\mathcal{R}$ denote the region lying in the first quadrant, enclosed by the parabola $y^2=x$, the curve $S$, and the lines $x=1$ and $x=4$.

Then which of the following statements is (are) TRUE?

$(4, \sqrt{3}) \in S$
$(5, \sqrt{2}) \in S$
Area of $\mathcal{R}$ is $\frac{14}{3} - 2\sqrt{3}$
Area of $\mathcal{R}$ is $\frac{14}{3} - \sqrt{3}$

Explanation

JEE Advanced 2025 Paper 2 Online Mathematics - Parabola Question 1 English Explanation 1

$$ y^2=x $$

chord with given mid point

$$ \begin{aligned} & T=S_1 \\ & y k-\frac{x+h}{2}=k^2-h \\ & 2 k y-x-h=2 k^2-2 h \end{aligned} $$

Now,

$\begin{aligned} & \left.A=\int_{y_1}^{y_2}\left(2 k y-2 k^2+h\right)-y^2\right) d y=\frac{4}{3} \\ & \left(k y^2+\left(h-2 k^2\right) y-\frac{y^3}{3}\right)_{y_1}^{y_2}=\frac{4}{3} \\ & k\left(y_2^2-y_1^2\right)+\left(h-2 k^2\right)\left(y_2-y_1\right)-\frac{1}{3}\left(y_2^3-y_1^3\right)=\frac{4}{3} \\ & \left(y_2-y_1\right)\left[k-2 k+h-2 k^2-\frac{1}{3}\left(4 k^2-2 k^2+h\right)\right]=\frac{4}{3} \\ & 2\left(h-k^2\right)^{1 / 2}\left[2 h-2 k^2\right]=4 \\ & \left(h-k^2\right)^{3 / 2}=1 \\ & x-y^2=1 \Rightarrow y^2=x-1\end{aligned}$

$\begin{aligned} & A=\int_1^4(\sqrt{x}-\sqrt{x-1}) d x \\ & =\frac{2}{3}\left[x^{3 / 2}-(x-1)^{3 / 2}\right]_1^4=\frac{2}{3}[8-3 \sqrt{3}-1] \\ & =\frac{14}{3}-2 \sqrt{3}\end{aligned}$

JEE Advanced 2025 Paper 2 Online Mathematics - Parabola Question 1 English Explanation 2

Solving chord and parabola

$$ \begin{aligned} & y k-\frac{y+h}{2}=k^2-h \\ & 2 k y-y^2-h=2 k^2-2 h \\ & y^2-2 k y+2 k^2-h=0 \\ & y_1+y_2=2 k \\ & y_1 y_2=2 k^2-h \\ & y_2-y_1=\sqrt{4 k^2-8 k^2+4 x} \\ & =2 \sqrt{h-k^2} \end{aligned} $$

Comments (0)

Advertisement