JEE Advance - Mathematics (2025 - Paper 1 Online - No. 16)

Let $\vec{w} = \hat{i} + \hat{j} - 2\hat{k}$, and $\vec{u}$ and $\vec{v}$ be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let $\alpha, \beta, \gamma$, and $t$ be real numbers such that

$\vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k},\ \ \ - t \alpha + \beta + \gamma = 0,\ \ \ \alpha - t \beta + \gamma = 0,\ \ \ \alpha + \beta - t \gamma = 0.$

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List – I List – II
(P) $\lvert \vec{v} \rvert^2$ is equal to (1) 0
(Q) If $\alpha = \sqrt{3}$, then $\gamma^2$ is equal to (2) 1
(R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^2$ is equal to (3) 2
(S) If $\alpha = \sqrt{2}$, then $t + 3$ is equal to (4) 3
(5) 5
(P) $\to$ (2)   (Q) $\to$ (1)   (R) $\to$ (4)   (S) $\to$ (5)
(P) $\to$ (2)   (Q) $\to$ (4)   (R) $\to$ (3)   (S) $\to$ (5)
(P) $\to$ (2)   (Q) $\to$ (1)   (R) $\to$ (4)   (S) $\to$ (3)
(P) $\to$ (5)   (Q) $\to$ (4)   (R) $\to$ (1)   (S) $\to$ (3)

Comments (0)

Advertisement