JEE Advance - Mathematics (2025 - Paper 1 Online - No. 12)
Let ℝ denote the set of all real numbers. Let f: ℝ → ℝ be a function such that f(x) > 0 for all x ∈ ℝ, and f(x+y) = f(x)f(y) for all x, y ∈ ℝ.
Let the real numbers a₁, a₂, ..., a₅₀ be in an arithmetic progression. If f(a₃₁) = 64f(a₂₅), and
$ \sum\limits_{i=1}^{50} f(a_i) = 3(2^{25}+1), $
then the value of
$ \sum\limits_{i=6}^{30} f(a_i) $
is ________________.
Answer
96
Comments (0)
